Review Article

Plant-Mediated Synthesis of Silver Nanoparticles – A Critical Review

Sneha Thakur1*, Krishna Mohan G2, Sandhya Rani M2

1Bojjam Narasimhulu Pharmacy College For Women, Vinay nagar, Saidabad, Hyderabad.
2Center for pharmaceutical sciences, Institute of Science and Technology, JNTU, Kukatpally, Hyderabad.

Received 11th May, 17; Revised 22nd June, 17, Accepted 12th July, 17; Available Online 25th July, 2017

ABSTRACT
Nanomedicine is a revolutionary science nanoparticles of size 1 - 100nm designed for the utilization in disease diagnostics and therapeutics, targeted drug delivery of drugs which have difficulty in solubility and bioavailability and also to be applied in numerous fields. The present critical review aims at enumerating the advantages, synthesis and characterization methods, as well as diversified applications of green silver nanoparticles. Silver nanoparticles is an attractive proposition due to their distinctive physical, chemical and biological properties including a high electrical as well as thermal conductivity, surface-enhanced Raman scattering, chemical stability, catalytic activity and non linear optical behavior which enables them of potential value in inks, microelectronics, and medical imaging. Plant mediated synthesis of silver nanoparticles (AgNPs) is now-a-day’s gaining enormous interest as it is cost effective, ecofriendly and has less side effects since there is no addition of external stabilizing or capping agents as the plant itself acts as stabilizing or capping agent. The secondary metabolites and other plant products like proteins, metabolites like alkaloids, terpinoids, saponins, glycosides etc are known to act as external stabilizing or capping agents. The plant mediated silver nanoparticles are known to show uniform particles characteristics and morphology. The bottom to top end approach of synthesis is effective to achieve desired particles size, shape and morphology. The synthesized green silver nanoparticles are characterized by UV-Vis spectroscopy, SEM/TEM analysis, EDAX/EDS, FTIR and other methods zeta potential measurement, thermo gravimetric analysis, Raman scattering. The plant mediated synthesized silver nanoparticles (green silver nanoparticles) are effective in delivering pharmacological activities like antimicrobial, anticancer, larvicidal etc. Also green Silver nanoparticles have diverse applications acting as biosensors, as targeted drug delivery candidates, in diagnostics and therapeutics, in medical and consumer products, as anti pollutant and in agriculture. The future perspective holds promising results in green synthesis of silver nanoparticles involving plants. This review projects a collective sequence of information for synthesizing and evaluation of green silver nanoparticles and scope of its pharmacological actions.

Keywords: Silver nanoparticles, AgNPs, UV-Vis, SEM/TEM, EDAX/EDS, FTIR.

INTRODUCTION
Nanomedicine is a revolutionary science involving nanoparticles of dimensions ranging between 1 - 100nm are designed for the utilization in disease diagnostics for identifying pathology of disease with sensitivity, provide therapy at molecular level with greater degree of cell specificity and targeted drug delivery of drugs which have difficulty in solubility and bioavailability. Nanotechnology is extensively being applied to provide targeted drug therapy, diagnostics, tissue regeneration, cell culture, biosensors and other tools in the field of molecular biology1. During the past few years, researchers have gained enormous interest in developing the silver nanoparticles (AgNPs) due to their distinctive physical, chemical and biological properties including a high electrical as well as thermal conductivity, surface-enhanced Raman scattering, chemical stability, catalytic activity and non linear optical behavior which enables them of potential value in inks, microelectronics, and medical imaging. Ag-NPs also exhibited broad spectrum bactericidal and fungicidal Activity with extraordinary defense against wide range of microorganisms and also due to the appearance of drug resistance against commonly used antibiotics. This property increased the commercial value of products in areas of plastics, soaps, pastes, food and textiles. The use of Nanosilver technologies has appeared in a variety of manufacturing processes and end products. The principle behind the use is to store the silver ions in the moisture layer released enabling them to act against bacterial/fungal pathogens2. The silver nanoparticles are monitored for various physico-chemical parameters and green synthesis of the silver nanoparticles is safe and effective way to combat harmful effects of synthetic chemicals3. The distinct physico-chemical characteristics of AgNPs have made them applicable in various fields like biomedical4, targeted drug delivery5, water treatment6, agricultural etc.7. AgNPs are also applied in inks, adhesives, electronic devises, pastes etc. due to high conductivity8. AgNPs have been synthesized by physico-chemical techniques such as chemical reduction8, gamma ray radiation9, micro emulsion10, electrochemical method11, laser ablation12, autoclave13, microwave14 and photochemical reduction15. These methods have effective yield, but they are associated with the limitations like use

*Author for Correspondence:snehathakur2189@gmail.com
Sneha et al. / Plant–Mediated Synthesis of...

IJPPR, Volume 9, Issue 7: July 2017

Page 948

of toxic chemicals and high operational cost and energy needs. These physico-chemical methods though have effective yield are prone to limitations like use of toxic chemicals, high operational cost and energy needs. Hence cost-effective and energy efficient new alternative for AgNPs synthesis using natural polymers16, plant extracts16, animals, and microorganisms17 as reducing and capping agents are now popular strategies. The synthesis assembly of silver nanoparticles using plants has got critical attention due to its rapid, ecofriendly, non-pathogenic, economical advantage and providing a single step technique for the biosynthetic processes. The silver ions are acted upon by stabilizing and capping agents of combination of secondary metabolites and other biomolecules such as proteins, amino acids, enzymes, polysaccharides, alkaloids, tannins, phenolics, saponins, terpenoids and vitamins which are chemically diverse in nature possessing medicinal values and are environmental benign19. The green synthesis of nanoparticles will unfold new areas of targeted therapeutics, diagnosis and conventional use20.

The present review describes the systemic description of green synthesis of nanoparticles from plants, characterization techniques and multiple facets of applications of silver nanoparticles.

\textit{Green synthesis of nanoparticles}

The green synthesis of the silver nanoparticles involves the interaction of reducing biological material with the aqueous silver nitrate solution. The temperature and other conditions have to be monitored during the reaction. The biological material itself acts as the stabilizing and capping agent, hence no external stabilizers or capping agents are required in green synthesis when compared to conventional chemical methods where toxic chemicals are used as stabilizers and capping agents. The commonly used biological agents are plants, micro organisms, biopolymers and animals. The literature supports wide use of plants, micro organisms, biopolymers as biological agents and very few reports of animal sources. The plant parts like leaves, bark, root, flower, fruits, seeds etc are used in the synthesis. The microbial cell mass of both intracellular and extracellular nature is involved in the synthesis of AgNPs. The biopolymers like collagen and chitosan are widely used.

The nanoparticles prepared from the plants have well defined surface characteristics like size, shape and morphology. The solvent used in most of the cases is water.

Figure 1: Synthesis of plant mediated silver nanoparticles.

Selected plant material is washed and ground into coarse powder in the blender

The plant powder is then extracted with suitable solvent preferably water using hot percolation/ soxhlet extraction and concentrated

The extract is then sonicated with silver nitrate solution with appropriate silver ion concentration at controlled temperature (Nucleation and accumulation)

Separation of nanoparticles can be done by centrifugation (stabilized and capped nanoparticles)

The change in color is observed and obtained silver nanoparticles are analyzed using UV-Vis, SEM, TEM, EDAX and XRD studies
also other solvents like ethyl acetate, methanol and ethanol22-26. The phytochemicals like secondary metabolites, chlorophyll22 and proteins32 of the plant are responsible to act as reducing and stabilizing agents. The green synthesis of AgNPs using the plant as biological agent is mentioned in Fig 1. Many plants with effective activities were utilized as sources for the synthesis of AgNPs. The synthesized AgNPs from the following plants, their shape and size along with their pharmacological screening are reported in Table.1 were found to have appropriate particle size shape and morphology. The synthesized AgNPs are separated as pellet or powders using ultracentrifugation or also dried3. The synthesis involves the reaction of the aqueous silver nitrate solution in which the Ag+ ion has 1mm concentration (widely used by researchers) with the biological reducing agents involving extracts of plants as shown in Fig. no.1. No external stabilizing and capping agents are added generally. The major physical and chemical factors that affect the AgNPs synthesis are reaction temperature, metal ion concentration, extract contents, pH of the reaction mixture, duration of reaction and agitation. Parameters like metal ion concentration, extract composition and reaction period largely affect the size, shape and morphology of the AgNPs. The suitable conditions for synthesis of AgNPs include basic pH, 25-37 \textdegree C temperature and controlled agitation4. However in few cases the external chemical agents like sodium-do-decyl sulphate were used for stabilization the AgNPs21.

Characterization of silver nanoparticles
The common characterization techniques used are UV-Vis spectroscopy, SEM, TEM, FTIR, XRD, EDAX/EDS analysis as shown in Table.1. Also analysis of zeta potential, thermal stability by thermo gravimetric analysis, circular dichroism study and concentration and conversion of AgNPs by inductive couple plasma is studied.

UV-Vis spectroscopy - The change in the color from colorless to light yellow is indicative of nanoparticles formation by many researchers and the SPR peak is generally observed at significant range of 400 - 450 nm characteristic for AgNPs42. The UV-Vis spectral analyses is used to analyze the dependency of pH, metal ion concentration, extract content on the formation of AgNPs and reveal the size-stability of synthesized AgNPs by exhibiting red shift in the SPR peak with increase in size of nanoparticles and blue shift for decrease in size43.

SEM / TEM analysis - The SEM/TEM analysis is used to determine the shape of the AgNPs. Many of the plants revealed different shapes and structures of nanoparticles like cubic27, irregular40, spherical39, hexagonal44, polyhedral45, isotropic44, flake46, flower47, pentagonal48, anisotropic49 and rod like structures50.

Dynamic light scattering (DLS) - The DLS is used for the measurement of average hydrodynamic parameters along with poly dispersive indexes.

FTIR analysis - FTIR analysis determines the interaction of the capping agents to achieve efficient stabilization.

X-ray diffraction analysis - XRD analysis is used to determine the lattice structure (morphology) of the synthesized nanoparticles like FCC (face centered cube), bcc (body centered cube) etc., The XRD studies of almost all the researchers reported the formation of face centered cubic (FCC) crystalline structured for AgNPs.

Energy dispersive spectroscopy EDAX/EDS, EDS analyses the elemental composition in the nanomaterials, which is exhibited at a characteristic optical absorption band peak around 3 KeV with silver weight percentage ranging from 45% to 80%. The reported stability of synthesized AgNPs has varied from 1 day to 1 year depending upon reducing agents and other operating conditions51,52.

Raman scattering - Raman spectroscopy detects the vibrational modes of molecules and can be used to identify vibrational signals of a variety of chemical species that are attached to the surface of nanoparticles during synthesis giving an idea about the surface morphology of the nanoparticles53.

Pharmacological applications

Antimicrobial activity
The antigenic capacity of the microorganisms against current antibiotics projects always a need for production of new antibiotics that possess broad spectrum activity. Silver has been used since years as a effective antimicrobial agent against a wide range of over 650 microorganisms from different classes such as gram-negative and gram-positive bacteria, fungi or viruses. Silver is known to interact with the disulphide bonds of the glycoprotein/ protein contents of microorganisms such as viruses, bacteria and fungi resulting in change of three dimensional structures of proteins thus blocking the functional operations of the microorganism. The silver ions may also form reactive oxygen species which interacts and damages the ATP assembly of respiration. Both silver nanoparticles and silver ions may also accumulate inside the cells of microbes causing damage to cell and thus are effective as antimicrobial agents possibly due to this mechanism54,55. The antimicrobial action may be summarized as shown in the Fig.2.

Antibacterial property
Bacterial cell lysis could be one of reason for its antibacterial property; the possible mechanism of the silver ions involves interaction of silver molecules with biological macromolecules such as enzymes and DNA through an electron-release mechanism or free radical production. The silver may bind to thiol groups (ASH) of enzymes to form stable SAAG bonds thus deactivated enzymes in the cell membrane that involve in trans membrane energy generation and ion transport. Also Ag(I) ions intercalates between the purine and pyrimidine base pairs disrupting the hydrogen bonding between the two anti-parallel strands and denaturing the DNA molecule. Gram-positive bacteria are less susceptible to Ag+ than gram-negative bacteria due to more peptidoglycan cell wall (negatively charged) than gram-negative bacteria, as silver ions are positively charged; more silver may get stuck by peptidoglycan in gram-negative bacteria56. Few plants have been reported to have antibacterial activity as reported in Table 1 like *Solanum tricobactum*56, *Syzygium cumini*56, *Centella asiatica*56, *Citrus sinensis*56, *Vitis vinifera*56 etc.
Figure 2: antimicrobial action of AgNPs.

Table 1: Plant mediated synthesis and elucidation of some plants along with pharmacological evaluation.

<table>
<thead>
<tr>
<th>S no</th>
<th>Plant material</th>
<th>Spectroscopic analysis</th>
<th>Size, Shape and morphology</th>
<th>Conditions of operation</th>
<th>Activity studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aqueous extract of Alternanthera sessilis<sup>27</sup></td>
<td>UV-Vis, TEM, XRD, FTIR</td>
<td><100nm in size with crystalline nature</td>
<td>0.1 - 1.5 mM, 20 min, 20˚C - 40˚C, 0 to 15 ml/1 ml, Hydrazine hydrate content: 1-15 ml, Static</td>
<td>Quick reducing agent for silver ions and significant anti proliferative effect against prostate cancer cells</td>
</tr>
<tr>
<td>2.</td>
<td>Aqueous Aloe leaf extract<sup>28</sup></td>
<td>UV-Vis, TEM, XRD</td>
<td>20 nm in size with spherical shape and FCC Structure</td>
<td>0.1 mm, 24 hr, 100˚C, 10 ml/90 ml, Stirred</td>
<td>Antibacterial to E. coli and S. aureus</td>
</tr>
<tr>
<td>3.</td>
<td>Aqueous extract of Boerhaavia diffusa plant powder<sup>29</sup></td>
<td>UV-Vis, FTIR, SEM, EDAX, XRD, TEM</td>
<td>25 nm in size with spherical shape and FCC, Cubic structure</td>
<td>1 mM, 1 hr, 60˚C, 20 ml/80 ml, Stirring, pH—2 - 11</td>
<td>Antibacterial to fish pathogens A. hydrophilia, F. branchiophilum, P. fluorescens</td>
</tr>
<tr>
<td>4.</td>
<td>Filtered aqueous Mesocarp extract of Cocos nucifera<sup>30</sup></td>
<td>UV-Vis, TEM, XRD, TEM, XRD</td>
<td>24 nm in size, spherical shape and FCC structure</td>
<td>1 mM, 2hr, room temp. 1.5 ml/30 ml, Static, 20 min at 12000 rpm</td>
<td>Larvicidal nature</td>
</tr>
<tr>
<td>5.</td>
<td>Filtered aqueous extract of Delphinium denudatum root powder<sup>31</sup></td>
<td>UV-Vis, FTIR, FESEM, XRD</td>
<td><85 nm Size, spherical Shape and FCC Structure</td>
<td>1 mM, 2hr, room temp. 1.5 ml/30 ml, Static, 20 min at 12000 rpm</td>
<td>Anti-bacterial against S. aureus, B. cereus, E. coli and P. aeruginos Larvicidal to Aedes aegypti</td>
</tr>
<tr>
<td>6.</td>
<td>Methanol extract and essential oil of Eucalyptus leucoxylon leaf<sup>32</sup></td>
<td>UV-Vis, TEM, XRD</td>
<td>50 nm in Size, Spherical Shape and FCC Structure</td>
<td>120 min, room temp. static</td>
<td>AgNP with biomedical potential</td>
</tr>
</tbody>
</table>
Antifungal activity
AgNPs are much effective fast-acting fungicides against a broad spectrum of common fungi including such as Aspergillus, Candida and Saccharomyces. Silver nanoparticles of Withania sominifera was found to exhibit antifungal activity against A. niger, A. flavus and C. albicans.

Larvicidal activity
Due to the gaining population of vector borne diseases, the new type of lavicides is in demand. The AgNPs are known...
to show the larvicidal activity by killing the larvae of vectors at early stage. Many AgNPs have shown larvicidal activity against malarial vectors Aedes aegypti\(^ {31}\), A. subpictus\(^ {32}\),and filariasis vector Culex quinquefasciatus\(^ {30}\) and other parasites\(^ {31,60}\) of plants like Cocos nucifera\(^ {30}\), Delphinium denudatum\(^ {13}\) Hibiscus rosalensis\(^ {32}\). No attempt has been made to elucidate a possible mechanisms of larvicidal activities has been made.

Wound Healing Activity

During apoptosis, the mitochondria are activated in the cell to reduce its viability. The AgNPs are found to show wound healing activity by penetrating into the fibroblast cells and accumulating over time but do not interfere with the cell viability. The AgNPs were found to show wound healing potential by reducing the mitochondrial activity\(^ {60}\). Indigofera aspalathoides mediated AgNPs were tested for wound-healing applications following excision in animal models.\(^ {34}\) Anreberia nobilis root extract was found to have wound healing activity in an excision animal model exerting a positive effect due to their antimicrobial potential and provided a novel therapeutic direction for wound treatment in clinical practice\(^ {62}\).

Anti cancer activity

The need for potent anticancer agents is always a topic of interest. The potential targets had need for effective therapy with less side effects is matter of concern. Green silver nanoparticles are cost effective, ecofriendly and have less side effects when compared to conventional chemotherapy, and synthetic drugs. The silver nanoparticles were found to have antiproliferative, cytotoxic activities. Silver nanoparticles synthesized using Acalypha indica Linn show only 40% cell inhibition against human breast cancer cells (MDA-MB-231)\(^ {65}\). The differences in their level of anticancer activity against A375 skin melanoma cells was observed for the AgNPs synthesized using the ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis, and Thuja occidentalis showed beneficial biological action\(^ {45}\). The cell death (100%) of the HeLa cell line was observed with 100 μg of AgNPs synthesized using the root of Morinda citrifolia\(^ {35}\). The piperidine, piperlongumine, and piperlonguminine present in Piper longum may be responsible for the synthesis of silver nanoparticles and exhibited a significant cytotoxic effect (94.02%) at 500μg/mL on HeEp-2 cell lines\(^ {85}\). The aqueous extract of Alternanthera sessilis\(^ {77}\) was quick reducing agent for silver ions and was found to have significant anti proliferative effect against prostate cancer cells.

Miscellaneous applications

These nanoparticles have been used in a diverse range of applications such as biosensors\(^ {86}\), targeted drug delivery candidates\(^ {67}\), diagnostics and therapeutic agents\(^ {38}\), cancer treatments\(^ {69}\), pesticides\(^ {70}\), and antimicrobials\(^ {71}\), water treatment\(^ {72}\), anti fouling agents\(^ {73}\), Medical and consumer products

Water treatment

Stable AgNPs synthesized using Anacardium occidentale fresh leaf extract at 80°C bud as a novel probe for sensing chromium ions [Cr\(^ {4+}\)] in tap water.

Anti fouling agents

The AgNPs may be used to treat many environmental concerns like; air disinfection, water disinfection, ground water and biological water disinfection and surface disinfection.

Medicinal Textiles and Devices - Extract of Curcuma longa tuber powder capped silver nanoparticles exhibited minimum bactericidal concentration for Escherichia coli BL-21 strain at 50mg/L. The immobilization onto the cotton cloth using sterile water is reported to show better bactericidal activity when compared to polyvinylidene fluoride immobilized cloth\(^ {74}\). The incorporation of Azadirachta indica synthesized silver nanoparticles into cotton cloth results in antibacterial effect against E. coli\(^ {75}\).

Catalytic activity

Filtered aqueous extract of Terminalia chebula fruit powder\(^ {39}\) showed catalytic activity on the reduction of methylene blue. Extract of Acacia nilotica pod mediated AgNPs modified glassy carbon electrode showed greater catalytic activity on the reduction of benzyl chloride compared to those of glassy carbon and metallic Ag electrode\(^ {76}\).

Agriculture

Emerging application of Ag nanoparticles particularly is in crop protection and the management of agricultural plant diseases\(^ {77,78}\).

CONCLUSION

The present review focuses on plant mediated synthesis of silver nanoparticles and its advantages with multi-access of its applications- an emerging area of nanotechnology. There is a steady increase in the publication scenario regarding the current topic. The angiosperm species has been widely used in comparison with the other sources of plants like gymnosperms, ferns etc. There are several characterizations methods for confirmation and simplest bottom to top approach of synthesis is advantageous due to its cost effectiveness, ecofriendly nature and fewer side effects as there is no additional stabilizing or capping agent added in plant mediated synthesis. The AgNPs synthesized using biological reducing and capping agents have shown wide variation in shape and size. The synthesized plant mediated silver nanoparticles have diverse applications like the anti-microbial action, anticancer activity, larvicidal activity, wound healing activity. Also plant mediated silver nanoparticles were found to have miscellaneous applications in fields of diagnostics and therapeutics, medicinal and consumer products, targeted drug delivery areas, agriculture and as ecofriendly \(\text{The results, however, are conflicting and there is a need for more focus to resolve new arenas in this field. The potential of AgNPs for their use as drug carriers in cancer therapy, as biosensors for metabolites and pollutants, as catalyst etc. is quite high and requires intensive and integrated research activity for harnessing it. Finally, we hope that this critical review may help scientists, researchers, and teachers in the field of materials science and nanotechnology.}

CONFLICT OF INTERESTS
ACKNOWLEDGMENT

The authors thank the Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, for providing research facilities.

REFERENCES

