The Study of Antioxidant, Membrane Stabilization, Anti Protein-denaturation Property and Analysis of Phytochemicals in Three Species of *Tagetes* Leaf and Flower Extract

Puspal De¹*, Monidipa Dey², Madhumita J Mukhophadhyay²

¹Department of Genetics, Institute of Genetic Engineering, 30 Thakurhat Road, Kolkata- 700128, West Bengal, India.
²Department of Biotechnology, Institute of Genetic Engineering, 30 Thakurhat Road, Kolkata- 700128, West Bengal, India.

Received: 14th April, 17; Revised 20th July, 17, Accepted: 15th Aug, 17; Available Online: 25th Aug, 17

ABSTRACT

Since the ancient time nature provides several herbal phyto-chemicals for the beneficial of human. *Tagetes* sp is one of the common and valuable herbs with multiple uses. In the current study, qualitative screening of different phytoconstituents, anti protein denaturation and membrane stabilization property was checked in ethanolic extract of three different species of *Tagetes* sp namely *Tagetes petula*, *Tagetes tenuifolia*, *Tagetes erecta*. Three different concentration 50, 75, 100 microlitre were taken for membrane stabilization and anti protein denaturation method using 50 microgram/ml sodium diclofenec as a reference drug. The study revealed that flower and leaf extract from each sample have several bioactive compounds and significant membrane stabilization and anti protein denaturation property. Presence of several phyto-chemicals may help to scavenge the reactive oxygen, potent membrane destabilizing and anti protein denaturation agent in human. So, in future it could be possible to develop a new phyto derived drug for an inflammatory disease in human as literature review shows that the membrane destabilization and protein denaturation are the principal cause of inflammation related disease.

Keywords: *Tagetes* sp, membrane stabilization, anti protein denaturation, bioactive compound, flower and leaf extract.

INTRODUCTION

Use of selective herbs and plants as an alternative and complementary therapy is a category of medicine that includes a range of treatment approaches that fall outside the realm of conventional medicine. These traditional herbal medicines, also known as a good source of neutraceuticals, possess various beneficial effects on our health. In recent years an increasing amount of research regarding neutraceuticals is being done to establish the safety and efficacy of these therapies, though compared with mainstream medical therapies researches are still meagre.

As growing interest in these neutraceuticals or functional foods is leading to detailed research, it became absolute necessary to test the plants involved thoroughly for their different medicinal properties as neutraceuticals are natural compounds with bioactive properties having health promoting, disease preventing or curative properties¹. It has been found that most of the observed therapeutic effects of plants are linked to their potent antioxidant activity. It is also said that, this kind of healing activity could be the traditional basis of plants used in Ayurveda.

Genus *Tagetes*, commonly known as marigold is used in Indian culture for different religious and decorative purpose. It was a native plant in Mexico and other warmer part of America and had been introduced in the Indian garden from long years back. It belongs to the family compositae and generally orange, yellow and reddish in color². The flowers contain several pigments but the color variations in different flowers of *Tagetes* spp are mainly due to the presence of a specific pigment called lutein, a yellow plant pigment of carotenoid family. In many traditional native practitioners in northern India used these plans for the treatment of specific cancer and the leaves are specially used for their coagulating property. Literature review revealed that lutein, occurred in all green plants and also in many flower petals, has effectively inhibit oxidant induced cellular damage. Lutein has cytostatic activity on cancer cell line and accumulated in high level in human retina especially in macular region³. The flower used as natural food coloring agent and consumption seems to be safe and low risk of cardiovascular disease development, progression of cancer and formation of cataract⁴,⁵. The flowers also have medicinal importance against inflammation. Information from current review and traditional knowledge prompted us to check the qualitative and quantitative analysis of bioactive compounds, total antioxidant property, membrane stabilization property and anti protein denaturation property of the ethanolic extract of flower and leaves of three *Tagetes* species like *Tagetes petulla*,

Author for Correspondence: puspal.dey@gmail.com
Tagetes erecta and **Tagetes tenuifolia**.

Herbal drugs are most common but herbalists usually extract plant substances in a different way the drug industry does. Herbalists believe that the remedy happens due to the delicate chemical balance of the whole plant, or mixtures of plants, not one particular active ingredient⁹. Believing in this principle we have taken the whole extract for the present study.

MATERIALS AND METHODS
Collection of Sample
The leaves and the flowers of several Tagetes species were collected from the local market during the month of December and the plants were identified by Departmental Head, Dept. of Biotechnology, IGE.

Preparation of Extract
The samples were initially washed with tap water then with distilled water to remove soil, dust particles and other contaminants. They were dried at 37°C in laboratory incubator. 50 gm of dried samples were dissolved in 200 ml of 100% ethanol and kept them 37°C for another 72 hrs in a shaker incubator with 120 rpm. After that the samples were grinded and centrifuged with 2000 rpm for 5 minutes. The supernatant were collected to perform several test10.

Qualitative analysis of phytochemicals
Bioactive compound or phytochemicals like tannin, flavonoids, steroid, phenols, amino acids, sterols and terpenoids were determined by the different methods. The qualitative analysis was done by the standard method of Harbone11.

Quantitative Estimation of Flavonoids
100µl flower and leaf extract from each sample were mixed with 100µl of 20% aluminium trichloride in methanol and a drop of acetic acid is added then the solution diluted with methanol up to 5ml. Absorption at 415nm was read after 40 minutes. Acetic acid was used as a blank. The calibration curve was obtained by preparing Quercetin solutions in range of concentrations 0.1mg to 1.0mg/ml12.

Quantitative Estimation of Polyphenol
100µl flower and leaf extract from each sample were dissolve in 900µl double distilled water. In this 1ml solution add 0.5 ml 2N of the Folin ciocalteu reagent and 1.5ml of 20% Na2CO3 solution was added, then the sample volume was made up to 8ml with distilled water followed by vigorous shaking and finally allowed to stand for 2 hrs and after that absorbance was taken at 765 nm. For standard calibration graph Gallic acid is used13.

Quantitative Estimation of Total antioxidant
The total antioxidant activity of Tagetes was evaluated by phosphomolybdenum method where 0.3 ml of plant extract was mixed with a 3ml solution containing 0.6 molar sulphuric acid, 28 mmol/L sodium phosphate and 47 mmol/L ammonium molybdate. The assay mixture with 100µl flower and leaf extract from each sample were incubated 95°C for 90 minutes. After cooling at 25°C absorbance of the resulting solution was measured spectrophotometrically at 695 nm14. Ascorbic acid used as positive control. The percentage of total antioxidant was calculated by the following formula-

$$\% = \frac{[(OD_{test} - OD_{blank})/ (OD_{ascorbic acid} - OD_{blank})] \times 100}{1}$$

In vitro Membrane stabilization assay
To study the anti-inflammatory activity, the HRBC membrane stabilization method was adopted after Gandhisan 1991 [15]. Fresh blood was collected from healthy donors without the history of NSAIDS administration for at least two weeks prior to the experiment. The equal volume of sterilized Alsever solution and blood were mixed, the mixture was centrifuged at 3000 rpm and packed cell were washed twice with isosalone. The washed packed cell was made a 10% (v/v) suspension with isosalone to make a HRBC suspension. The assay mixture contained 1ml PBS (pH 7.4), 2ml of hyposalone (0.36% KCl), 0.5ml HRBC suspension and 1 ml of Test solution. Sodium diclofenec was used as reference drug and distilled water was used as control. All the assay mixtures were incubated at 37°C in an incubator for 30 minutes and after that centrifuged at 1000 rpm for 2 minutes. The supernatant containing haemoglobin was estimated using spectrophotometer at 560 nm. 50mg sodium diclofenec was dissolverse in 50ml double distilled water and the final solution was used as reference drug solution.

The percentage inhibition of membrane stabilization was calculated by using the following formula

$$\% \text{ inhibition} = 100 \times \frac{V_t}{V_c}$$

Where, $V_t = \text{absorbance of control}$, $V_c = \text{absorbance of test sample}$

In vitro Protein Denaturation Assay
In this experiment 0.2 ml of egg albumin (from fresh hen’s egg) act as a protein source, 2.8 ml of phosphate buffered saline (PBS, pH 6.4) and 2 ml of varying concentrations of the test extract such as 50µl, 75µl, 100µl ethanolic extract of flower and leaf extract from each sample were mixed to prepare assay mixture. Similar volume of double-distilled water served as control. Then the mixtures were incubated at 37±2°C in a BOD incubator for 15 minutes and then heated at 70°C for 5 minutes in water bath. After cooling, their absorbance was measured at 660 nm by using vehicle as blank. Diclofenac sodium at the final concentration of (50µg/ml) was used as reference drug and treated similarly for determination of absorbance15-16.

The percentage inhibition of protein denaturation was calculated by using the following formula

$$\% \text{ inhibition} = 100 \times \frac{V_t}{V_c - 1}$$

Where, $V_t = \text{absorbance of test sample}$, $V_c = \text{absorbance of control}$

RESULT
Result of Qualitative analysis of phytochemical
In the present study, qualitative analysis of ethanolic extract of leaf and flower of several Tagetes species was carried out. In the experimental results shows that tannin, flavonoids, steroids, phenols and amino acids were present in the extracts but terpenoids and sterols were absent and the results are depicted in the Table-1 elaborately.

Result of Quantitative Estimation of Flavonoids
Ethanolic extract of three Tagetes species shows presence of flavonoids and the concentration of flavonoids were more in flowers than the leaves extract in all three species. The Tagetes petula flower shows maximum amount of flavonoid content (1.54±0.17 mg/ml equivalent to quercetin) and the Tagetes tenuifolia flower shows moderate amount of flavonoid content (0.74±0.47 mg/ml equivalent to quercetin) and Tagetes erecta flower shows minimum amount of flavonoid content (0.56±0.16 mg/ml equivalent to quercetin). Similarly the leaf extract shows
maximum (0.78±0.11 mg/ml equivalent to quercetin), moderate (0.34±0.08 mg/ml equivalent to quercetin) and minimum (0.20±0.23 mg/ml equivalent to quercetin) flavonoid content respectively. Reference Curve of Quercetin for Quantification of Flavonoids and Quantification of Total Flavonoids in Three Tagetes spp from reference curve of QE were depicted in Figure-1 and Figure-2.

Result of Quantitative Estimation of Polyphenol
All The three Tagetes species shows presence of polyphenols in both the flowers and the leaves extract. The Tagetes petula leaf extract shows maximum amount of polyphenol content (0.29±0.57 µg/ml equivalent to Gallic Acid) and the flower extract shows minimum amount of polyphenols (0.16±0.36 µg/ml equivalent to Gallic Acid) among the all three species. In the Tagetes tenuifolia both the flower and leaf extract shows moderate amount of polyphenol content (0.23±0.44 µg/ml equivalent to Gallic Acid) and (0.22±0.63 µg/ml equivalent to Gallic Acid) respectively. Tagetes erecta flower shows maximum amount of polyphenol content (0.24±0.26 µg/ml equivalent to Gallic Acid). Similarly the leaf extract shows minimum amount of polyphenol content (0.21±0.71 µg/ml equivalent to Gallic Acid). Reference Curve of Gallic acid for Quantification of Polyphenol and Quantification of Total polyphenols in Three Tagetes spp from reference curve of GA were depicted into Figure-3 and Figure-4.

Result of Quantitative Estimation of Total antioxidant

Figure 5: Quantification of Total antioxidant property in Three Tagetes spp.

Figure 6: In vitro membrane stabilization activity of the ethanolic leaf extract of Three Tagetes spp using Sodium diclofenec as reference drug.

Figure 7: In vitro Protein Denaturation activity of the ethanolic leaf extract of Three Tagetes spp.
Table 1: Qualitative analysis of phytochemicals of the ethanolic leaf and flower extract of Three Tagetes spp.

<table>
<thead>
<tr>
<th>Determination Test</th>
<th>Procedure</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanin Test</td>
<td>Lead acetate solution was added with sample extract and curry white precipitated observed</td>
<td>Positive</td>
</tr>
<tr>
<td>Flavonoid Test</td>
<td>Concentrated sulphuric acid was added with sample extract and the color was changed to orange color</td>
<td>Positive</td>
</tr>
<tr>
<td>Steroid Test</td>
<td>Chloroform and conc. Sulphuric acid were added with sample extract slowly with the side of the test tube and observed brown upper layer.</td>
<td>Positive</td>
</tr>
<tr>
<td>Phenol Test</td>
<td>5% ferric chloride solution was added with sample extract and dark green color was observed.</td>
<td>Positive</td>
</tr>
<tr>
<td>Amino acid Test</td>
<td>Add 10% ninhydrine solution and incubate at 60°C in water bath. The dark violet color observed</td>
<td>Positive</td>
</tr>
<tr>
<td>Sterol Test</td>
<td>Concentrated sulphuric acid was added with sample extract and no change of color was observed</td>
<td>Negetive</td>
</tr>
<tr>
<td>Terpenoid Test</td>
<td>Add distilled water and shake vigorously. No brown color interface observed</td>
<td>Negetive</td>
</tr>
</tbody>
</table>

Table 2: In vitro membrane stabilization activity of the ethanolic leaf extract of Three Tagetes spp.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration(µl)</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Tagetes petula leaf</td>
<td>250</td>
<td>59.8</td>
</tr>
<tr>
<td>Tagetes erecta leaf</td>
<td>500</td>
<td>65.6</td>
</tr>
<tr>
<td>Tagetes tenuifolia leaf</td>
<td>250</td>
<td>62.1</td>
</tr>
<tr>
<td>Tagetes tenuifolia</td>
<td>500</td>
<td>63.8</td>
</tr>
<tr>
<td>Sodium</td>
<td>50</td>
<td>64.0</td>
</tr>
<tr>
<td>Diclofenec</td>
<td>68.8</td>
<td></td>
</tr>
</tbody>
</table>

Percentage of total antioxidant property was found highest among flower extract in Tagetes erecta flower (95%) then Tagetes petula flower (55%) followed by Tagetes tenuifolia flower (44%). Among leaves extract, Tagetes tenuifolia has been shown highest antioxidant property (56%) then Tagetes petula leaf (22%) followed by Tagetes erecta leaf (16.7%). The result was graphically represented in Figure-5.

Result of In vitro Membrane stabilization assay

All the three species of Tagetes leaf extract has been shown a good percentage of inhibition against hypotonicity induced membrane destabilization but the concentration of extract used for the experiment lead the result. In this experiment two variable concentrations (250µl and 500µl) of same leaf extract were used. As shown in the result, Tagetes patella 500 µl leaf extract shows highest percentage of inhibition but 250µl of same extract shows lowest percentage of inhibition and the Tagetes erecta and Tagetes tenuifolia leaves and flower extract shows moderate inhibition percentage against heat induced protein denaturation. The main noticeable thing in this case is that the Tagetes leaves extract have strong protein denaturation property and it act as a very minute concentration, because after huge dilution of crude extract like 1:15= extract: DH2O have the potent anti protein denaturation activity. The result and concentration of different extracts and drug were depicted in Table-3 and the graphical representation of the result was shown in Figure-7.

DISCUSSION

Inflammation is common feature of several diseases. It mainly occurs due to the endotoxin released by the pathogen during pathogenic infection, due to sudden physical shock or accident and also associated with many other diseases. Inflammation mainly is of two types-acute and chronic, but both types are painful and create many difficulties in daily lifestyle. Inflammations are not always fatal like cancer and cardiovascular diseases but it occurs in almost same frequency with these two fatal diseases17-18. According to the severity it was not properly ranked but medical practitioner and clinician throughout the world faces difficulty to treat the patients with inflammation and inflammation related disease.

The most common and popular remedy from inflammation and inflammation related disease is administration of oral or intramuscular non steroidal anti inflammatory drug. But it has huge side effect as prolong use of NSAID may cause other disease like ulcer, cancer, renal failure, allergy, skin irruption, digestive problems and so on19-20. Alternative medicine or herbal medicine is largely needed at that point. In the modern age, many drugs are prepared from medicinal plants and plant parts and the clinician sometimes switch to herbal therapy and neutraceutical therapy rather than pharmaceutical approach for better performance of pain relief.

ROS or reactive oxygen species which are the naturally produced reactive molecules within the body as 5% of inhaled oxygen converted to these ROS during metabolism. Physical or mental stress factor and over workload, excess physical exercise, hormonal imbalances
Table 3: *In vitro* Protein Denaturation activity of the ethanolic leaf and flower extract of Three *Tagetes* spp.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>........................</td>
<td>........................</td>
</tr>
<tr>
<td>Tagetes petula leaf</td>
<td>1:15(Extract: DDH₂O)</td>
<td>92.6</td>
</tr>
<tr>
<td>Tagetes petula flower</td>
<td>1:15(Extract: DDH₂O)</td>
<td>67.6</td>
</tr>
<tr>
<td>Tagetes erecta leaf</td>
<td>1:15(Extract: DDH₂O)</td>
<td>79.0</td>
</tr>
<tr>
<td>Tagetes erecta flower</td>
<td>1:15(Extract: DDH₂O)</td>
<td>91.6</td>
</tr>
<tr>
<td>Tagetes tenuifolia leaf</td>
<td>1:15(Extract: DDH₂O)</td>
<td>83.8</td>
</tr>
<tr>
<td>Tagetes tenuifolia flower</td>
<td>1:15(Extract: DDH₂O)</td>
<td>76.4</td>
</tr>
<tr>
<td>Sodium Diclofenec</td>
<td>50µg/ml</td>
<td>68.74</td>
</tr>
</tbody>
</table>

some time produces the ROS molecules. Electronic configuration in its outer orbits is the reason for the strong oxidizing power. Due to strong oxidizing nature it can accelerate cell mortality and cell damage by easy reaction with cellular constituents. Many antioxidant molecules are produced within the body which reduced the cellular damage caused by ROS with scavenging mechanism. In normal homeostasis mechanism ROS molecules are completely scavenge by the antioxidant produced by the body. When the balance between ROS and antioxidant was disturbed then the problem arises and the residual ROS molecules then leads to many stress related disease. ROS react with membrane lipids causing cellular membrane destabilization which in-turn releases cellular materials within the intracellular space and finally inflammation occurred. These molecules also react with membrane protein or other cellular or sub cellular proteins and performed conformational change in protein structure which finally lead to protein denaturation. Denaturation and renaturation is a common characteristic of protein and during denaturation the functional properties may get lost, but in case of removal of denaturing factors it renatures again and gets full functional conformation back. Sometimes removal of the denaturing factors does not give back its full conformation which is called permanent protein denaturation. In these situations finally the denatured proteins get precipitated and removed from the specific site by the macrophages. Excess deposition of denatured protein and aggregation of macrophages at this particular site is another cause of inflammation. So, if the cellular membrane remains stable then no release of cellular materials within the intracellular space occurs and no occurrence of inflammation happens. Thus increase of membrane stabilization property is the main way out of this problem. Finally, the lower the denaturation of cellular proteins, the rate of inflammation also gets reduced.

Plants have several bioactive compounds or phytochemicals like poly-phenols, flavonoids, tannin, steroids, which have potent antioxidant property. They may work individually or collectively to scavenge the reactive oxygen species and if these compounds are able to reduce ROS molecules then they must be also have strong membrane stability and potent anti-protein denaturation activity which will be able to reduce the inflammation. So, plant extract with potent antioxidant property, membrane stabilization property, anti protein denaturation property have great medicinal value to produce the alternative medicine which may be used as potential anti-inflammatory drug in recent future. In pharmaceutical research the pharmacist mainly devoted to isolate pure products for the production of new drug but the herbalist mainly believe in combinatorial product for drug designing because balance of all chemical compounds in a particular combination may act properly and more effectively as they can act as individually thus they use plant extract instead of specific compound.

In the current study, three different species of *Tagetes* leaf and flower extract were used as concentration dependant manner, to evaluate the preliminary anti-inflammatory property of the plant by membrane stabilization method, and protein denaturation assay. To explain or understand the actual mechanism, estimation of total antioxidant, poly-phenols, flavonoids and determination test of other bioactive compounds were done with the same extract.

CONCLUSION

In the present study, preliminary in vitro anti-inflammatory property was evaluated by membrane stabilization methods and protein anti-denaturation method in three different *Tagetes* species namely *Tagetes petula, Tagetes erecta, Tagetes tenuifolia*. To know the mechanism behind these anti-inflammatory properties several other biochemical tests were done such as qualitative analysis of bioactive compounds, quantitative analysis of flavonoids and polyphenols, estimation of total antioxidant property. Both the flower and leaf ethanolic extract were used for the study. Comparative analysis within the three species of *Tagetes* shows that the species *petula* have the slightly better result within the experiments performed than the species *erecta* and *tenuifolia*. The anti-inflammatory and antioxidant effect of this plant should be further evaluated to confirm the bioactive compounds responsible for these activities in pursuit of newer phytotherapeutics against inflammatory diseases and many oxidative stress related disease.

ACKNOWLEDGEMENT

The authors thankfully acknowledge the Director and Vice Principal of Institute of Genetic Engineering for funding and affiliation. We are also thankful to all laboratory members and other associated person of IGE for their enthusiastic participation.

IJPRR, Volume 9, Issue 8: August 2017
REFERENCES

