Importance of Quality Metrics: A Review

Sneha Mary Abraham, N. Vishal Gupta*

Pharmaceutical Quality Assurance group, Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Sri Shivarathreshwara Nagar, Mysuru – 570015, Karnataka, India.

Available Online: 1st January, 2016

ABSTRACT
“Quality metric” is the measure of the effectiveness of systems associated with the manufacture of pharmaceutical products, including the pharmaceutical quality system. This is widely used in industry and they are potentially used to reduce drug shortages and it is the common language to gauge progress around quality. Quality Metric may include elements such as customer satisfaction, supplier performance, manufacturing defects, complaints and many other internal and external processes. It should focus on effectiveness and measure that the right things are being done correctly. Quality Metrics are difficult to establish but provide excellent insight into the health of the quality system, the use of quality metric data leads to further development of FDA’S risk based inspection schedule and to identify situations in which there may be a risk for drug supply disruption, to improve the efficiency and effectiveness of establishment inspections, to also improve FDA’S evaluation of drug manufacturing and control operations. It can be used to assist segment sites for risk based inspection schedule and also assist to segment product and individual product manufacturer based on risk. The key points in quality metrics are keep it simple, improve objectively and segmenting sites/products and also evaluating quality systems. Share the quality goals across the organisation and establish quality performance metrics based on linkage to organisational objective

Keywords: FDA, Quality metrics

INTRODUCTION
Quality Metrics is measurement of quality, where companies measure performance against quality standards to determine whether they are meeting expectations. By tracking quality metrics, we can reveal the weakness in a process or product which notifies a business of the necessity to correct areas of deficiency quickly. At its basis, FDA plans to use its authority to collect records “in advance of or in lieu of” an inspection, under section 704(a)(4) (A) of the FD&C Act to gather various quality metrics data records. This study is important for Greater visibility and transparency between industry and regulators, ability to identify drifts earlier to drive audit/inspection schedules, Risk based approach to inspections, increasing consistency of metrics. The quality metric also encourages pharmaceutical manufacturers to conduct robust quality measurements on their own products. By having quality metric data will allow it to “improve efficiency and effectiveness” of the inspection. Quality metrics is used primarily for reducing inspection frequencies. The objective of this is to establish and collect these metrics which provide various stakeholders – from industry to regulators – with greater insight into the state of quality at a given manufacturing facility, and allow stakeholders to better anticipate and address quality issues while simultaneously reducing unnecessary regulatory burden.

DISCUSSION
What is Quality Metric?
An objective measure of the quality of a product or process
Quality is the fitness for intended use of the product, relevant to patients
Product (and/or process) segmentation
An objective measure of the quality of a site
Quality is measure of site’s ability to manufacture products fit for intended use
Site segmentation (can include a build of product/process scores)
An objective measure of the effectiveness of systems associated with the manufacture of pharmaceutical products, including the pharmaceutical quality system
On site evaluation of quality systems
Why do we need Quality Metrics?
Metrics are used to drive improvements and help businesses focus their people and resources on what’s important. The range of metrics that companies can employ vary from those that are mandatory – for legal, safety or contractual purposes to those that track increases in efficiency, reductions in complaints, greater profits and better savings. Overall, metrics should reflect and support the various strategies for all aspects of the organization, including finance, marketing, competition, standards, or customer requirements and expectations. Metrics indicate the priorities of the company and provide a window on performance, ethos and ambition.

*Author for Correspondence
As the implementation of manufacturing metrics will involve new processes and practices for both industry and the agency, participants suggested the establishment of a “safe harbor” provision for reporting metrics during the first phases of implementation. The establishment divided by the number of products produced completed within 30 days of annual due date at the establishment in the same timeframe.

Invalidated Out-Of-Specification (OOS) Rate = the number of OOS test results for the finished product invalidated by the establishment divided by the total number of OOS test results divided by the total number of tests performed by the establishment in the same timeframe.

Annual Product Review (APR) or Product Quality Review (PQR) on Time Rate = the number of APRs or PQRs completed within 30 days of annual due date at the establishment divided by the number of products produced at the establishment.

The implementation and collection of metrics data, including potential mechanisms for collection, frequency of reporting, and level of reporting requirements for organizations, sites, and individual products, has been proposed. The collection and analysis of data on process capability output or quality failure allows for early identification of products at risk for quality failure or reduce quality-related drug shortages and recalls.

Quality assurance and control play an essential role in the pharmaceutical manufacturing process, by ensuring that patients are provided with medications that are safe, effective, and produced at a high level of quality. Metrics data collection and analysis may also help mitigate significant risks to consumers such as risk from unsafe products and drug shortages. Quality metrics are widely used throughout the pharmaceutical industry to monitor quality control systems and processes, and many of the components that inform those metrics (e.g., data on process capability output or statistical process control) are collected and maintained as part of cGMP compliance.

REFERENCES

1. ISPE Quality Metric project by Christopher J. Potter on behalf of quality metrics project team
3. Measuring Pharmaceutical Quality through manufacturing metrics and risk-based Assessment by Engelberg center for health care reform at brookings

<table>
<thead>
<tr>
<th>Metrics proposed by stakeholders</th>
<th>Possible Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot acceptance rate</td>
<td>Number of lots rejected/Number of lots attempted</td>
</tr>
<tr>
<td>Product Quality Complaint Rate</td>
<td>Number of quality complaints/ (Number of units released/1 million)</td>
</tr>
<tr>
<td>Confirmed Out-Of-Specification (OOS) rate</td>
<td>Number of confirmed Out-Of-Specification (OOS)/Number of release tests conducted</td>
</tr>
<tr>
<td>Recall rate</td>
<td>Number of product recalls / Number of lots released</td>
</tr>
</tbody>
</table>

How data is collected from industry for measuring of quality metrics and reported?

Ultimately, metrics will help to tell the organization:
Where it has been
Where it is heading
Whether something is going wrong
When the organization reaches its target

Examples of Potential Metrics

- Batch Failure Rate
- Right First Time
- OOS/ Laboratory Failure Investigation Rates

Methods for calculating Quality Metrics

- Lot Acceptance Rate
- Product Quality Complaint Rate
- Invalidated Out-of-Specification (OOS) Rate
- Annual Product Review Rate or Product Quality Review (PQR) on Time Rate

\[\text{Lot Acceptance Rate} = 1 - \frac{x}{a} \]
where \(x \) is the number of specification-related rejected lots in a timeframe divided by the number of lots attempted by the same establishment in the same timeframe.

The implementation and collection of metrics data, including potential mechanisms for collection, frequency of reporting, and level of reporting requirements for organizations, sites, and individual products. It has been proposed that all metrics data be reported annually by product sponsors. The reporting will be conducted in an organizational level, however each organization would collect and report data for each product and manufacturing site. As the implementation of manufacturing metrics will involve new processes and practices for both industry and the agency, participants suggested the establishment of a “safe harbor” provision for reporting metrics during the first phases of implementation.