Available online on www.ijtpr.com

International Journal of Toxicological and Pharmacological Research 2022; 12(5); 120-125

Original Research Article

An Observational Descriptive Assessment of Lipid Profile of Diabetic Patients

Pankaj Kumar¹, Binod Kumar²

 ¹Associate Professor, Department of General Medicine, Shri Ramkrishna Institute of Medical Sciences and Sanaka Hospital, Durgapur, West Bengal, India
 ²Assistant Professor, Department of General Medicine, ICARE Institute of Medical Sciences and Research and Dr. Bidhan Chandra Roy Hospital, Haldia

Received: 13-02-2022 / Revised: 15-03-2022 / Accepted: 12-04-2022 Corresponding author: Dr. Binod Kumar Conflict of interest: Nil

Abstract

Aim: The aim of this study was the assessment of lipid profiles mainly triglycerides in diabetic patients from Bihar region

Methods: This was a cross-sectional study was done in the Department of General medicine, Shri Ramkrishna Institute of Medical Sciences and Sanaka Hospital, Durgapur, West Bengal, India, for the period of 1 year. A total of 160 newly diagnosed type 2 diabetes mellitus within the last 3 months using the ADA (American Diabetes Association) criteria and both males and females were include in this study for determine the lipid profile levels.

Results: According to ATP III classification 68 (42.5%) participants had normal serum triglycerides levels which is <150 mg/dl whereas 112 (57.5%) participants had an abnormal level of serum triglycerides. Among the 112 (57.5) participants with abnormal triglycerides, 32.5% had borderline high levels (150-199mg/dl), 25% had high levels (200-499 mg/dl). In our study, 52.5% participants had low HDL and 47.5% participants had normal HDL. The Gender distribution showed that 32 male participants and 52 female participants had low HDL. In our study, among the 160 participants, 110 (68.75%) participants had desirable total Cholesterol levels of <200mg/dl, 40 (25%) had borderline high levels of 200- 239mg/dl and 10 (6.25%) had high total cholesterol levels of \geq 240mg/dl. 20 (12.5%) had high levels of LDL of which 6 were males and 14 were females. 4 (2.5%) participants had very high levels of LDL of which 2 was male and 2 was female.

Conclusions: Patients who have diabetes mellitus are at a greater risk of developing early atherosclerosis and microvascular problems if they have hyperlipidemia, which is the most prevalent diabetic consequence. The development and progression of typical lipid abnormalities in diabetes, such as elevated triglycerides, LDL, serum cholesterol, and low HDL, may be prevented by maintaining good control of blood glucose levels.

Keywords: Cardiovascular disease, Hypertriglyceridemia, Type 2 diabetes, Lipid profile

This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the t erms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http:// www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

India, a developing Asian country with fast industrialization and a modern lifestyle is facing a great problem in having the largest number of people with diabetes. [1] The literature on Indian studies showed a threefold rise in the diabetic prevalence in rural as well as urban areas. [2,3]

One of the important cardiovascular risk factors in type 2 diabetes is dyslipidemia. The composition of lipids in diabetic dyslipidemia is more atherogenic than in dyslipidemia in general. [4] The term diabetic dyslipidemia comprises a triad of raised triglycerides, reduced high density lipoprotein (HDL) and excess of small, dense low density lipoprotein. [5] Every one of these dyslipidemic features are associated with an increased risk of cardiovascular disease. Increased hepatic secretion of large triglyceride-rich VLDL impaired and clearance of VLDL is central to the pathophysiology of this dyslipidemia. [6] The contribution of triglycerides to CVD risk has been much debated in the past, with many important prospective studies observing an association. between elevated triglycerides levels and CVD risk. [7] This independent association with long term all-cause mortality supports the idea that serum triglycerides could play a role in type 2 diabetic patients mortality risk. [8] In the present study, we have aimed to study the lipid profile abnormalities in newly diagnosed type 2 diabetics; as such an assessment will enable earlier detection and treatment of these lipid profile derangements thereby minimizing the cardiovascular morbidity and mortality that these can ensue.

This was a cross-sectional study was done in the Department of General medicine, Shri Ramkrishna Institute of Medical Sciences and Sanaka Hospital, Durgapur, West Bengal, India. for the period of 1 year, after taking the approval of the protocol review committee and institutional ethics committee. After taking informed consent detailed history was taken from the patient.

Methodology

A total of 160 newly diagnosed type 2 diabetes mellitus within the last 3 months (American using the ADA Diabetes Association) criteria and both males and females were include in this study for determine the lipid profile levels. Patients diabetics, with type Patients 1 on antipsychotic medications, Patients with active hypothyroidism and Patients with Cushing's syndrome were excluded from the study.

All procedures and interventions have been established only after obtaining adequate/ appropriate consent in a prescribed form. After inclusion in the study in each case a thorough history was taken followed by a detailed examination and the observations were recorded.

Results

The Table 1 shows the gender distribution of the participants of our study. Among the total participants, 60 (37.5%) were males, and 100 (62.5%) were females.

Table 2 shows the age distribution of the participants in the study. The maximum number of patients belonged to the age group of 40-50 years (55%) and the least number belonged to the age group 20-30 years (2.5%).

Table 1. Gender distribution among the participants			
Gender	No.=160	Percentage	
Male	60	37.5	
Female	100	62.5	

Table 1: Gender distribution among the participants

Material and methods

International Journal of Toxicological and Pharmacological Research

Age	No. of patients n=160	Percentage
Below 30	4	2.5
30-40	30	18.75
40-50	88	55
Above 50	38	23.75

Table 2: Age distribution among the participants

According to ATP III classification 68 (42.5%) participants had normal serum triglycerides levels which is <150 mg/dl whereas 112 (57.5%) participants had an abnormal level of serum triglycerides. Among the 112 (57.5) participants with abnormal triglycerides, 32.5% had borderline high levels (150-199mg/dl), 25% had high levels (200-499 mg/dl). Among the participants in the study, 23.33% male and 26% female participants had above normal triglyceride levels. The above stacked bar chart shows that

most participants had normal triglyceride levels. The total number of female participants who had abnormal triglycerides are higher than the male participants According to the NCEP ATP III criteria, HDL levels \leq 40 is considered low for males and \leq 50 is considered low for females. Based on this criterion, in our study, 52.5% participants had low HDL and 47.5% participants had normal HDL. The Gender distribution showed that 32 male participants and 52 female participants had low HDL.

Table 3: Serum Triglycerides

Serum Triglycerides	Male =60	Female=100	Total	Percentage
Normal (<150mg/dl)	30	38	68	42.5
Borderline high (150-199 mg/dl)	16	36	52	32.5
High (200- 499mg/dl)	14	26	40	25

Table 4: Serum HDL – distribution

Serum HDL	Male =60	Female=100	Total	Percentage
Normal	28	48	76	47.5
Low HDL	32	52	84	52.5

Serum cholesterol levels	Male =60	Female=100	Total	Percentage
Normal	38	72	110	68.75
Border line	18	22	40	25
High	4	6	10	6.25

 Table 5: Serum cholesterol levels distribution

In our study, among the 160 participants, 110 (68.75%) participants had desirable total Cholesterol levels of <200 mg/dl, 40 (25%) had borderline high levels of 200-239 mg/dl and 10 (6.25%) had high total cholesterol levels of $\geq 240 \text{mg/dl}$. Among the participants who had elevated cholesterol levels, a female predominance was noted with 22% of participants who had borderline high

cholesterol levels being female Among the total participants, according to the NCEP-ATP III criteria, 46 (28.75%) participants had an optimal level of LDL of which 16 participants were males and 30 were females. 56 (35%) had near optimal levels of LDL and 24 participants were males and 32 were females. 34 (21.25%) had borderline high levels of LDL out of which 12 participants

were males and 22 were females. 20 (12.5%) had high levels of LDL of which 6 were males and 14 were females. 4 (2.5%)

participants had very high levels of LDL of which 2 was male and 2 was female.

LDL levels	Male =60	Female=100	Total	Percentage
Optimal levels	16	30	46	28.75
Near optimal levels	24	32	56	35
Borderline high	12	22	34	21.25
High	6	14	20	12.5
Very high	2	2	4	2.5

Table 6: DL levels- distribution

Discussion

Out of the 160 participants of our study, all were type 2 diabetics diagnosed in the past 3 months. Overall gender distribution of the study population revealed that 37.5% were males and 62.5% were females. The higher proportion of females in this study may be due to the nature of the population seeking admission to our hospital. A similar female predominance was noted in a study done by Deepa et al. [9]

The maximum number of patients belonged to the age group of 40-50 years (55%) and the least number belonged to the age group 20-30 years (2.5%).

A similar study done by Nahar et al involving 200 participants also showed majority of participants in the between 40-50 years. [10] According to ATP III classification 68 (42.5%) participants had normal serum triglycerides levels which is <150 mg/dl whereas 112 (57.5%) participants had an abnormal level of serum triglycerides. Among the 112 (57.5) participants with abnormal triglycerides, 32.5% had borderline high levels (150-199mg/dl), 25% had high levels (200-499 mg/dl). A study done by Bharadwaj et al. in North India showed that hypertriglyceridemia was present in 42.7% of subjects who were diabetics. [11] In our study, Among the participants in the study, 23.33% male and 26% female participants had above normal triglyceride levels. The above stacked bar chart shows that most participants had normal triglyceride levels. The total number of female participants who had abnormal triglycerides are higher than the male participants. A study done in four selected regions of India showed that 29.5% had hypertriglyceridemia with the highest prevalence in Chandigarh and the common risk factors being obesity, diabetes and dysglycemia. [12]

In our study, 52.5% participants had low HDL and 47.5% participants had normal HDL. The Gender distribution showed that 32 male participants and 52 female participants had low HDL. In a study down by Karadag et al to assess prevalence of metabolic syndrome in cardiac patients and it was found that the most prevalent paramenter was found to be low HDL (69%). The result quite similar to our study shows that low HDL is one of the important risk factors for cardiovascular diseases. [13]

In our study, 46 (28.75%) had optimal levels of LDL (<100mg/dl) and 71.25% had elevated LDL levels. A study by Ogbera showed that elevated LDL levels was the most commonly documented lipid abnormality in patients with metabolic syndrome. [14]

High LDL levels is one of the risk factors for developing cardiovascular complications and such elevated levels are seen even in newly detected type 2 diabetics as seen in our study. [15] In our study, among the 160 participants, 110 (68.75%) participants had desirable total Cholesterol levels of <200mg/dl, 40 (25%) had borderline high levels of 200- 239mg/dl and 10 (6.25%) had high total cholesterol levels of >240mg/dl. Among the participants who had elevated cholesterol levels, a female predominance was noted with 22% of participants who had borderline high cholesterol levels being female. A study done by Joshi et al in India regarding the prevalence of dyslipidemia has shown 13.9% of their subjects had hypercholesterolemia and Tamil Nadu has the highest rates of hypercholesterolemia. [12]

Conclusion

The present study concluded that patients who have diabetes mellitus are at a greater risk of developing early atherosclerosis and microvascular problems if they have hyperlipidemia, which is the most prevalent diabetic consequence. The development and progression of typical lipid abnormalities in diabetes, such as elevated triglycerides, LDL, serum cholesterol, and low HDL, may be prevented by maintaining good control of blood glucose levels.

Reference

- 1. Samatha P, Venkateswarlu M, Siva Prabodh V. Lipid Profile Levels in Type 2 Diabetes Mellitus from the Tribal Population of Adilabad in Andhra Pradesh, India. Journal of Clinical and Diagnostic Research. 2012 May (Suppl-2),6(4): 590-592.
- Ebrahim S, Kinra S, Bowen L, Andersen E, BenShlomo Y. The effect of the rural to urban migration on obesity and diabetes in India: A cross-sectional study. PLos Med
 7(4): 10002(8, b = 10, 1271/j)

7(4):e1000268.doi:10.1371/journal.pmed. 1000268.

3. Mohan V, Deepa M, Deepa R, Shanthirani CS, Farooq S. Secular trends in the prevalence of diabetes and impaired glucose tolerance in urban south India – The Chennai urban rural epidemiology study (CURES-17). Diabetalogia 2006; 49:1175-78.

- 4. Mahato RV, Gyawali P, Raut PP, Regmi P, Kelanand PS, Dipendra RP, et al. Association between glycaemic control and serum lipid profile in type 2 diabetic patients: glycated haemoglobin as a dual biomarker. Biomed Res. 2011;22(3):375-80.
- 5. Taskinen MR. Diabetic dyslipidemia. Atheroscler Suppl. 2002;3(1):47-51.
- 6. Ronald M. Krauss. Lipids and Lipoproteins in Patients with Type 2 Diabetes. Diabetes Care Jun 2004;22(6)1496-504.
- 7. Hokanson JE, Austin MA: Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta- analysis of population-based prospective studies. J Cardiovasc. Risk. 1996;3(2):213-9.
- 8. Keating GM, Croom KF, Fenofibrate: a review of its use in primary dyslipidemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs. 2007,67(1):121-53.
- Deepa M, Farooq S, Datta M, Deepa R, Mohan V. Prevalence of metabolic syndrome using WHO, ATPIII and IDF definitions in Asian Indians: The Chennai Urban Rural Epidemiology Study. Diabetes Metab Res Rev. 2007;23(2):127-34.
- Nahar S, Rahman MZ, Ullah M, Debnath BC, Sultana N, Farhad CMRQ. Prevalence of Metabolic Syndrome in Newly diagnosed Type 2 Diabetes Mellitus. Cardiovase J. 2011;4(1):17-25.
- 11. Bharadwaj S, Misra A, Misra R, Goel K, Bhatt SP, Rastogi K et al. High Prevalence of abdominal, intraabdominal and subcutaneous adiposity and clustering of risk factors among urban asian Indians in north India. PLos One. 2011;6(9):e24362

- 12. Celikhisar, H., & Ilkhan, G. D. Determining The Etiological Factors in Pleural Fluid by Crp, Albumin And Procalcitonin Levels: New markers in pleural fluid identification. Journal of Medical Research and Health Sciences, 2020:3(2), 880–885.
- 13. Joshi SR, Anjana RM, Deepa M, Pradeepa R, Bhansali A, DHandania VK. Prevalence of dyslipidemia in urban and

rural India. The ICMR- INDIAB Study. PLoS ONE. 2014;9(5):e96808.

- 14. Karadag MK, Akbulut M. Low HDL levels as the most common metabolic syndrome risk factor in heart failure. Int Heart J. 2009 Sep;50(5):571-80.
- 15. Ogbera AO. Prevalence and gender distribution of the metabolic syndrome. Diabetol Metab Syndr. 2010; 2(1): 1.