Available online on www.ijtpr.com

International Journal of Toxicological and Pharmacological Research 2023; 13(10); 20-24

Original Research Article

Comparative Evaluation of Mic by E-Test, Chrom Agar MeReSa and Cefoxitin Disc Diffusion for Detection of Methicillin Resistant *Staphylococcus Aureus* (MRSA)

Mansi Gupta¹, Lav Gupta², Amit Saxena³, Anshul Gupta⁴, Amardeep Rai⁵

¹Demonstrator, Department of Microbiology, Govt. Bundelkhand Medical College, Sagar (M.P) ²Assistant Professor, Department of Surgery, Govt. Bundelkhand Medical College, Sagar(M.P) ³Assistant Professor, Department of Medicine, Govt. Bundelkhand Medical College, Sagar(M.P) ⁴Associate Professor, Department of Orthopaedics, Govt. Bundelkhand Medical College, Sagar (M.P) ⁵Professor, Department of Microbiology, Govt. Bundelkhand Medical College, Sagar (M.P)

Received: 19-07-2023 / Revised 27-08-2023 / Accepted 30-09-2023 Corresponding author: Dr. Anshul Gupta Conflict of interest: Nil

Abstract:

Infections caused by MRSA are worldwide, resulting in increased mortality and morbidity. Detecting the *mecA* gene or its product by PCR is recognized as a gold standard for detection of MRSA. In resource limited clinical settings phenotypic method which is simple, rapid, accurate and cost effective is required. Cefoxitin disc diffusion is considered as surrogate marker for *mec A* gene, and could be considered as gold standard for MR isolates. The aim of this study was to do a comparative evaluation of E-test MIC and Chrom Agar MeReSa against Cefoxitin disc diffusion for detection of Methicillin resistant *Staphylococcus aureus* (MRSA). A total of 174 *S. aureus* isolates were identified, which were subjected to Cefoxitin disc diffusion, Chrom Agar MeReSa and Oxacillin MIC by E-test. A total of 69 isolates were identified as MRSA by Cefoxitin disc diffusion test. In this study sensitivity and specificity of Cefoxitin is 100% while sensitivity and specificity of Chrom Agar MeReSa as 88.23% and 91.50% and Oxacillin MIC by E-test comes out as 94.02% and 94.39%.

Keywords: MRSA(Methicillin resistant *Staphylococcus aureus*), E- test MIC

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Staphylococcus aureus is one of the most common bacteria encountered in the clinical practice. Despite the introduction of effective antimicrobial agents and improvements in hygiene, staphylococci have persisted as important hospital and community pathogens. [1,2,3]

As the incidence of MRSA is on rise in India from 6% to 80% in last two decades. [4,5] Increase in the number of bacterial strains that show resistance to methicillin (MRSA) has become a serious clinical and epidemiological problem. Methicillin resistance in *S. aureus is* based on the production of an additional penicillin binding protein, PBP 2a or PBP 2', which is mediated by the *mecA*gene. [6]

MRSA infection is of concern because it is resistant to a number of widely used antibiotics. Treatment options for MRSA are limited and less effective, than options available for susceptible *S. aureus* infections leading to increased morbidity and mortality in hospitalized patients. Cost of treatment for MRSA isolates is another major problem found by patients in developing countries. [7] For these reasons, simple, rapid, accurate and sensitive method for the detection of methicillin resistance is of key importance to ensure correct antibiotic treatment in infected patients as well as control of MRSA isolates in hospital environments and prevent their spread. This study was carried out for comparative evaluation of Minimum Inhibitory Concentration (MIC) for Oxacillin by E-test and Chrom Agar MeReSa against Cefoxitin disc diffusion for detection of MRSA strains.

Material and Methods

This cross sectional prospective analytical study was carried out during November 2012 to April 2014 in the Department of Microbiology, People's College of Medical Sciences and Research Centre, Bhopal. A total of 174 *S. aureus* isolated from non-repetitive clinical samples from IPD and OPD of People's Hospital were included in study after Institutional Ethics Committee (IEC) approval.

All the samples were processed according to standard microbiological procedures available. The collected samples were plated onto nutrient agar, 5%

International Journal of Toxicological and Pharmacological Research

sheep blood agar and MacConkey agar (MA). Urine samples were plated onto CLED and incubated at 37°C for 48 hours before being reported as negative. The isolates were confirmed as *S. aureus* by standard isolation & identification methods like colony morphology, Gram's stain, Catalase test, Slide and Tube coagulase tests, Mannitol fermentation and DNase test.

Tests for detection of MRSA

Cefoxitin Disc diffusion test [8]

It was done using Cefoxitin (30µg) antibiotic disc. Inoculum of test isolate was prepared and incubated for 2 -3 hours. The turbidity after incubation was matched to 0.5 McFarland standard. After the standardization of the inoculum, a freshly prepared, dried MHA plate was inoculated for lawn culture using a sterile cotton swab stick. Cefoxitin 30µg disc was placed in the center and the plate was incubated aerobically at 35°C \pm 2°C for 24 hours. The zone size was measured in reflected light and was interpreted as Resistant \leq 21mm and Sensitive \geq 22 mm as per CLSI guidelines.(Fig: 1 & 2)

Figure:1 Cefoxitin Sensitive Isolate

3.Chrom Agar MeReSa [9]

HiCrome MeReSa Agar Base (M-1674) procured from Hi media India for the isolation and selective identification of Methicillin Resistant *Staphylococcus aureus* (MRSA) from clinical isolates. As per manufacturers instruction the medium is made selective for MRSA by the addition 1 vial of sterile rehydrated contents of MeReSa Selective Supplement (FD229) aseptically and pour into sterile Petri plates.

Figure:2 Cefoxitin Resistant Isolate

For detection of MRSA on MRSA CHROMagar, a bacterial suspension of 0.5 Mac Farland was prepared and was streaked on above mentioned medium .All plates were incubated at 35°C for 24h. Strains growing on CHROM agar MRSA and yielding colonies with blue/bluish green were considered MRSA as recommended by manufacture (Fig:3)

chrom agar

Chrom agar- Positive

Figure:3 Chrom Agar Sensitive isolates

E- test MIC Oxacillin [10]

Muller Hinton Agar plate with 2% NaCl was prepared. The dried plates were lawn cultured with

test strain using sterile non toxic cotton swab using standardized inoculum (0.5 McFarland). The Ezy MIC Oxacillin strips (EM-065, HiMedia, India) were applied on the inoculated plates as per manufacturer's instruction. The plates were incubated at $35^{\circ}C \pm 2^{\circ}C$ for 24 hours and read when

Figure: 4 E-test MIC Oxacillin Sensitive isolate

Two standard strains, one methicillin sensitive *S. aureus* (MSSA) ATCC (29213) and one MRSA ATCC (43300) were included in each batch of testing by different method.

Results

A total of 174 *Staphylococcus aureus* strains isolated from the non-repetitive clinical samples were included and processed for MRSA identification. Out of 174 *S.aureus* isolates 69(39.65%) were found to be MRSA by cefoxitin disc diffusion test.

sufficient growth is seen and MIC is noted where the ellipse of zone of resistance intersected the MIC scale on the strip. The strains were considered to be MRSA when MIC of $\geq 4 \ \mu g/ml$ was observed and Methicillin sensitive *S.aureus* if MIC was $\leq 2.0 \ \mu g/ml$. (Fig: 4 & 5)

Figure: 5 E-test MIC Oxacillin Resistant isolate

A total of 60 (34.48%) isolates were found to be MRSA by chrom Agar MeReSa. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 88.23%, 91.50%, 86.95% and 92.38% respectively.

A total of 63 (36.20%) isolates were found to be MRSA by Oxacillin MIC by E-test. When compared with Cefoxitin disc diffusion, Oxacillin MIC by E-test was found to be significant using Pearsons Chi-square test for significance with p value of < 0.05. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 94.02%, 94.39%, 91.30% and 96.19% respectively.

Table 1: Comparison of Chrom Agar MeReSa with Cefoxitin Disc Diffusion (n=1	174)
---	------

Test applied		Cefoxitin test		Total
		Positive	Negative	
Chrom Agar MeReSa	Positive	60	8	68
	Negative	9	97	106
Total		69	105	174

Tuble 2. Comparison of E test with Orioxian Dist Diffusion (in 171)							
Test applied		Cefoxitin test		Total			
		Positive	Negative				
E-test	Positive	63	4	67			
	Negative	6	101	107			
Total		69	105	174			

Table 2: Comparison of E-test with Cefoxitin Disc Diffusion (n=174)

Among MRSA isolates 73.91% resistance was as observed to Ampicillin, 71.01% to Erythromycin, 62.31% to Gentamicin, 57.97% to Amoxycillin clavulanic acid, 57.97% to Clindamycin, 53.62% to Azithromycin, 52.17% to Ciprofloxacin, 39.13% to Pristinomycin, 27.53% to Netilmicin, 24.63% to Doxycycline, 5.79% to Linezolid. There is no resistance for Teicoplanin &Vancomycin. (Graph 1)

Discussion

Testing of Methicillin Resistance in *S. aureus*, has been a challenge for clinical laboratories in recent years. So accurate and early determination of methicillin resistance is of key importance in prognosis of infections caused by *S.aureus*. Methods with high sensitivity and specificity are required and provide a major guideline for treatment of infection caused by this organism.

MRSA are being isolated with increasing frequency from clinical specimens and clinical problems posed by their multidrug resistance in recent years have led to the interest in the present study.Several studies have been showed that detection of *mecA* gene is a gold standard method for diagnosis of MRSA in clinical microbiology laboratories. [11] However, most laboratories especially in developing countries are not in position to perform molecular methods.

In various study results of Cefoxitin disc diffusion test are in concordance with the PCR for *mecA* gene. Thus, the test can be an alternative to PCR for detection of MRSA in resource constraint settings.[12,13] Cefoxitin disc diffusion is considered as surrogate marker for *mecA* gene, and could be considered as gold standard for MR isolates.[14]

During the study, a total of 174 *S. aureus* were isolated from various clinical samples by conventional method. Out of that 69 isolates were MRSA by Cefoxitin disc diffusion test which is considered as gold standard. In the present study, we evaluated and compared Cefoxitin disc diffusion, Chrome Agar MeReSa and MIC for Oxacillin by E-test for the detection of MRSA which was found to be significant for determination of MRSA with p value of <0.05 and high Sensitivity & specificity.

Another method of detection was CHROMagar MeReSa which is a chromogenic medium used to detect MRSA isolates. The advantage of this medium is that it allows the presumptive identification of bacterial species and their methicillin resistance profiles in a single step.

Recent studies have found that this test has a high sensitivity, up to 95.4% (Diederen et al. 2005) [15] 96%(Tande et al. 2008) [16], 94% in (De matos et al. 2010) [17]. Chrom Agar MRSA is inexpensive, simple method but in our study during the preparation of this chromogenic media, a supplement is required for better results and sometimes the prescribed amount of supplement is not enough to show the results so dose of supplement should be set accordingly.

Studies by B. Sasirekha [18] and S. Karami et al [19] considered E-test MIC as a gold standard method for detection of MRSA. The E-test method has the advantages of being easy to perform as a disc diffusion test and approaches the accuracy of PCR for *mecA*. Despite of its high sensitivity and specificity this test is expensive, and in our experience Oxacillin MIC strip is sensitive to temperature change and affects the results by losing its potency.

Cefoxitin disc diffusion test should be preferred in clinical microbiology laboratories because it is easy to perform, do not require special technique, media preparation and finally more cost-effective in comparison to E-test MIC. So Cefoxitin disc diffusion can be used in routine settings. Studies like A. Jain et al [14], M. Rahbar et al [20] also suggested the same.

In this study there is high resistance for Ampicillin, Erythomycin, Gentamicin, Amoxy- clav, Clindamycin, Azithromycin and Ciprofloxacin because of their frequent use in the wards. While Netilmycin and Doxycycline show less resistance as compared to other studies because in this geographical area, these drugs are not commonly prescribed by the clinicians. So it might be a good alternative for MRSA in this area.

To conclude, MIC determination by E-testing provides a good alternative for Cefoxitin disc diffusion test with high sensitivity and specificity so also for better confirmation using two or more methods for diagnosis of MRSA.

References

- 1. Chambers HF. Methicillin Resistance in *Staphylococci*: Molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997; *10* : 781-91.
- Sutherland R, Rolinson GN. Characteristics of Methicillin-Resistant Staphylococci. J Bacteriol1964; 4: 887-99.
- Ryffel C, Strassle A, Kayser FH, Berger- Bachi B. Mechanisms of hetero resistance in Methicillin-Resistant *Staphylococcus aureus*. Antimicrob Agents Chemother. 1994; 38:724-8.
- Pulimood T B, Lalitha M K, Jesudon M V, Pandian R, Selwyn J J. The spectrum of antimicrobial resistance among Methicillin Resistant *Staphylococcus aureus*(MRSA) in a tertiary care in India. Indian J Med Res 1996;103:212-5.
- Verma S, Joshi S, Chitnis V, Hemwani N, Chitnis D. Growing problem of Methicillin Resistant *Staphyloco ci*: Indian Scenario. Indian J Med Sciences 2000;54:535-540.
- Bressler AM, Williams T, Culler EE, Zhu W, Lonsway D, Patel JB etal. Correlation of Penicillin Binding Protein 2a detection with Oxacillin resistance in *Staphylococcus aureus* and discovery of a novel penicillin binding protein 2a mutation. J Clin Microbiol. 2005;43(9): 4541-44.
- Chaudary & Anupama. Prevalence of Methicillin Resistance in *Staphylococcus aureus*. Indian J Med Microbiol. 1999;17(3):154-155.
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; 23rd Informational Supplement. CLSI document M100-S23. Wayne, PA: Clinical and Laboratory Standards Institute; 2013.
- 9. HiCrome MeReSa Agar Base M1674. HiMedia Laboratories Pvt Ltd. Mumbai-400086, India.
- HIMEDIA Ezy MIC, EM065 Oxacillin-Vancomycin Ezy MIC Strip, Lot No. : 0000175660.

HiMedia Laboratories Pvt. Ltd. Mumbai-400086, India

- Adaleti R, Nakipoglu Y, Karahan ZC, Tasdemir C, Kaya F. Comparison of polymerase chain reaction and conventional methods in detecting methicillin-resistant *Staphylococcus aureus*. J Infect DevCtries 2008;2(1):46-50.
- 12. Methews AA, Thomas M, Appalaraju B, Jayalaxmi J. Evaluation and comparison of tests to detect methicillin resistant *Staphylococcus aureus*. Indian Journal of Pathology and Microbiology2010;53(1):79-82.
- Skov R, Smyth R, Clausen M, Larsen AR, Frimodt-Møller N, Olsson-Liljequist B, et al. Evaluation of a cefoxitin 30 μg disc on Iso-Sensitest agar for detection of methicillin-resistant *Staphylococcus aureus*. J Antimicrob Chemother. 2003;52:204-7
- Jain A, Agarwal A, Verma R.K. Cefoxitin disc diffusion test for detection of Methicillin resistant Staphylococci. Journal of Medical Microbiology 2008; 57: 957–961.
- Diederen B, van Duijn I, van Belkum A, Willemse P, van Keulen P, Kluytmans J 2005. Performance of CHROMagar MRSA medium for detection of methicillin-resistant *Staphylococcus aureus*. *J Clin Microbiol* 43: 1925-1927.
- Tandé D, Garo B, Ansart S, Lejeune B 2008. Efficiency of CHROMagar-MRSA in detecting meticillin-resistant *Staphylococcus aureus* in a routine setting. *J Hosp Infect 70*: 388-389.
- 17. De Matos P.DM, Schuenck R.P, Cavalcante F.S, Caboclo R.MF, N dos Santos K.R. Accuracy of phenotypic methicillin susceptibility methods in the detection of *Staphylococcus aureus* isolates carrying different SCC*mec* types. *Mem Inst Oswaldo Cruz*, Rio de Janeiro2010;105(7): 931-934.
- Sasirekha B et al. Evaluation and Comparison of Different Phenotypic Tests to Detect Methicillin Resistant Staphylococcus aureus and their Biofilm Production. International Journal of PharmTech Research2012; 4(2): 532-541.
- Karami S, Rahbar M, Yousefi J. V. Evaluation of Five Phenotypic Methods for Detection of Methicillin Resistant *Staphylococcus aureus* (MRSA). Iranian Journal of Pathology 2011;6 (1): 27 – 31.
- Rahbar M, Yaghoobi M, Fattahi A. Comparison of different laboratory methods for detection of Methicillin Resistant *Staphylococcus aureus*. Pak J Med Sci 2006; 22(4): 442-445.