Available online on <u>www.ijtpr.com</u>

International Journal of Toxicological and Pharmacological Research 2023; 13(12); 280-283

Original Research Article

A Prospective Analysis of the Risk Factors for Surgical Site Wound Infection and Related Complications

Alpana Singh¹, Ajay Kumar²

¹Tutor, Department of Microbiology, Government Medical College, Bettiah, Bihar, India

²Professor, Department of Microbiology, Government Medical College, Bettiah, Bihar, India

Received: 11-08-2023 / Revised: 12-09-2023 / Accepted: 23-10-2023 Corresponding Author: Dr. Alpana Singh Conflict of interest: Nil

Abstract

Aim: The aim of the present study was to assess the incidence and associated comorbidities which influence the surgical site wound infection.

Material & Methods: A prospective study was conducted in Department of Microbiology. Total 200 patients operated for general surgical procedures in between the periods of 12 months were included for the present study. **Results:** The incidence rate of Surgical Site Infections (SSIs) increased with age, ranging from 22.50% in the 18-29 age group to 35% in those aged 60 and above. The incidence of SSIs was higher among males (26.66%) than females (25%). The incidence rate of Surgical Site Infections (SSIs) showed a positive correlation with increasing BMI, from 20% in underweight subjects to 33.33% in obese subjects. Subjects from urban areas had a higher incidence rate of SSIs (30%) compared to those from rural areas (20%). The rate of SSIs was higher in subjects undergoing elective surgeries (30.47%) compared to emergency surgeries (20%). Subjects who were obese had an SSI rate of 43.33%. Among subjects with diabetes, 60% developed SSIs, and among those with anaemia, 37.50% developed SSIs.

Conclusion: Our study provides valuable insights into the risk factors associated with SSIs, including age, BMI, and comorbidities. Future research should focus on longitudinal studies to understand the temporal relationship between these factors and SSIs. Interventions targeting these risk factors could potentially reduce the incidence of SSIs.

Keywords: Infection rate, Risk factors, SSI

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Surgical site infection (SSI) is defined as an infection that occurs in surgical patients at the incision site within 30 days after surgery if there is no implant or within one year if there is an implant. [1,2,3] It is a potential complication associated with any type of surgical procedure. [4,5] It is commonest nosocomial infections after Urinary tract infections (UTI), responsible for increasing cost, substantial morbidity and occasional mortality related to surgical operations and continue to be major problem even in hospital with most modern facilities and standard protocols of pre operative preparation and antibiotic prophylaxis. [6,7] SSI rate has varied from a low of 2.5% to a high of 41.9%.⁶ Pathogens that cause SSI are acquired either endogenously from the patient's own flora or exogenously from contact with operative room personnel or the environment. SSIs remain a major cause of morbidity and death among the operated patients and continue to represent about a fifth of all healthcare-associated infections. [8] Although at

least 5% of patients develop an SSI after surgery. [9] SSI rate varies from 1.5% to 20% in various hospitals. [10]

A plethora of patient and procedure-related factors have been strongly associated with the occurrence of SSI over the past decades. [11] Advanced age, poor nutritional status, increased body mass index (BMI), smoking, remote infections, and administration of immunosuppressive medication are amongst the most common patient-related risk factors for the occurrence of SSI. On the other hand, prolonged operative time, contaminated wound status, prophylactic administration of antibiotics, and emergency nature of surgery are among the most common procedure-related risk factors. [11,12]

SSIs can be attributed to several endogenous factors, i.e., age and weight of the patient, co-morbidity, immune status etc. and several exogenous factors, like, preoperative hospital stay, preoperative prophylactic measures, type of wound and surgery, sterilization of instruments etc. [13] To improve the patient outcome and to minimize the economic burden, it becomes necessary to decrease the rate of SSI. In the past few years, important advances have been achieved in the field that may have had an impact on the reduction of SSIs. [14] These include more effective surgical sterilization procedures, laminar flow, high-efficiency particulate absorbing (HEPA) filters, ultraviolet radiation, air renewal, humidity control, differential temperature and air pressure, particle count, surface colony count and antibiotic prophylaxis. [15-18]

Hence the aim of the study was to assess the incidence and associated comorbidities which influence the surgical site wound infection.

Material & Methods

A prospective longitudinal study was conducted in Department of Microbiology, Government Medical College, Bettiah, Bihar, India. Total 200 patients operated for general surgical procedures in between the periods of 12 months were included for the present study.

Exclusion Criteria

> Stitch abscesses were excluded from this study.

Methodology

Informed written consent was taken from the participants for the study. Data were collected from the data sheet which included basic demographic details of the patient, data of underlying disease status, nature of surgical procedure (elective or emergency), wound class and presence of drain etc. Wound infection was diagnosed if any one of the following criteria was fulfilled within thirty days of operation: serous or non-purulent discharge from the wound, pus discharge from the wound, serous or non-purulent discharge from the wound with signs of inflammation (oedema, redness, warmth, raised local temperature, fever > 38°C, tenderness, induration) and wound deliberately opened up by the localized surgeon due to collection (serous/purulent). For the classification of the type of the wound CDC (centers for disease control and prevention) criteria were used. According to the CDC criteria type of the wound is class I- clean, class II- clean contaminated, class III- contaminated, class IV- dirty. [19] Weight and height were measured by using standardized technique by trained investigators as suggested by Jelliffe. [20] Weight was measured with standard digital weighing machine. Height was measured using calibrated fixed scales while the subject stood bare feet. Classification of nutritional status was done by using body mass index (BMI). BMI was derived by dividing one's weight in kilograms by the square of height in meters. Weight disorders were assessed on the basis of BMI. [21]

Statistical Analysis

Data entry and analysis was done in software Epi info version 7.0. Chi square was used to identify association of the risk factor with outcome. P-value e < 0.05 was considered to be statistically significant.

Results

Age Group	Number of Subjects	Number with SSIs	Incidence Rate (%)
18-29	40	9	22.50
30-39	46	11	23.91
40-49	50	11	22
50-59	44	12	27.27
≥ 60	20	7	35

 Table 1: Age-Related Incidence Rates of Surgical Site Infections

The incidence rate of Surgical Site Infections (SSIs) increased with age, ranging from 22.50% in the 18-29 age group to 35% in those aged 60 and above.

Table 2: Gender and SSIs

Gender	Number of Subjects	Number with SSIs	Incidence Rate (%)
Male	120	32	26.66
Female	80	20	25

The incidence of SSIs was higher among males (26.66%) than females (25%).

Table 5. 551 mendence Nates across Different Diff Categories			
BMI Category	Number of Subjects	Number with SSIs	Incidence Rate (%)
Underweight (<18.5)	20	4	20
Normal (18.5-24.9)	80	15	18.75
Overweight (25-29.9)	64	18	28.125
Obese (≥30)	36	12	33.33

Table 3: SSI Incidence Rates across Different BMI Categories

The incidence rate of Surgical Site Infections (SSIs) showed a positive correlation with increasing BMI, from 20% in underweight subjects to 33.33% in obese subjects.

Area	Number of Subjects	Number with SSIs	Incidence Rate (%)
Urban	120	36	30
Rural	80	16	20
Type of surgery			
Emergency	105	32	30.47
Elective	95	19	20

Table 4: Incidence of SSIs by Geographical Area and Incidence of SSIs by Type of Surgery

Subjects from urban areas had a higher incidence rate of SSIs (30%) compared to those from rural areas (20%). The rate of SSIs was higher in subjects undergoing elective surgeries (30.47%) compared to emergency surgeries (20%).

Factor	Number of Subjects	Number with SSIs	Incidence Rate (%)
Obesity	30	13	43.33
Diabetes	10	6	60
Anemia	80	30	37.50

Table 5: Incidence of SSIs by	Comorbidities and Other Factors
-------------------------------	--

Subjects who were obese had an SSI rate of 43.33%. Among subjects with diabetes, 60% developed SSIs, and among those with anaemia, 37.50% developed SSIs.

Discussion

SSIs are associated with elevated healthcare costs, prolonged hospitalization, and increased mortality rates. [22] Various factors contribute to the risk of developing SSIs, including patient- specific factors such as age, comorbidities like obesity and diabetes, and hospital factors such as the experience level of the surgical team. [23-25] Moreover, SSIs are a hidden burden in healthcare, often manifesting after the patient's discharge. [26] Currently, available data suggest that SSIs increase the length of hospital stay, readmission rate, morbidity, mortality, and financial burdens for individuals and communities. Patients with an SSI have approximately 7–11 additional postoperative hospital-days, 2–11-times higher risk of death. [27,28]

The incidence rate of Surgical Site Infections (SSIs) increased with age, ranging from 22.50% in the 18-29 age group to 35% in those aged 60 and above aligning with previous research that suggests older age is a risk factor for SSIs. [29] The incidence of SSIs was higher among males (26.66%) than females (25%). The incidence rate of Surgical Site Infections (SSIs) showed a positive correlation with increasing BMI, from 20% in underweight subjects to 33.33% in obese subjects. Subjects from urban areas had a higher incidence rate of SSIs (30%) compared to those from rural areas (20%).

The rate of SSIs was higher in subjects undergoing elective surgeries (30.47%) compared to emergency surgeries (20%). This could be because emergency surgeries often involve more complex procedures and are performed under time constraints, which may increase the risk of contamination and infection. [30] Subjects who were obese had an SSI

rate of 43.33%. Among subjects with diabetes, 60% developed SSIs, and among those with anaemia, 37.50% developed SSIs. National Academy of Science [31] reported higher rate of infection in patients with Diabetes mellitus which is similar to our study. Prolonged preoperative hospital stay was found to be associated with higher rate of infection. Prolonged preoperative hospital stay leads to colonization with antimicrobial resistant micro organisms and itself directly affects patient's susceptibility to infection either by lowering host resistance or by providing increased opportunity for ultimate bacterial colonization.

Conclusion

Our study provides valuable insights into the risk factors associated with SSIs, including age, BMI, and comorbidities. Future research should focus on longitudinal studies to understand the temporal relationship between these factors and SSIs. Interventions targeting these risk factors could potentially reduce the incidence of SSIs.

References

- 1. N.M. Bagnall, S. Vig, P. Trivedi, Surgical-site infection, Surgery 27 (10) (2009) 426–430.
- D. Leaper, J. Tanner, M. Kiernan, Surveillance of surgical site infection: more accurate definitions and intensive recording needed, J. Hosp. Infect. 83 (2) (2013) 83–86.
- M.A. Smith, et al., Clinical practice guideline surgical site infection prevention, Orthop. Nurs .32(5)(2013)242–248.
- C.S. Moucha, et al., Modifiable risk factors for surgical site infection, JBJS 93 (4) (2011) 398– 404.
- J.P. Kirby, J.E. Mazuski, Prevention of surgical site infection, Surg. Clin. 89 (2) (2009) 36 5– 389.
- 6. Lilani SP, Jangale N, Chowdhary A, Daver GB. Surgical site infection in clean and clean-

contaminated cases. Indian J Medical Microbiology 2005; 23(4):249-252.

- Anvikar A.R., Deshmukh A.B., Karyakarte R.P., Damle A.S., Patwardhan N.S., Malik A.K., et al. A one year prospective study of 32 80 surgical wounds. Indian J Medical Microbiology 1999; 17(3):129-132.
- 8. S. K. Kitembo and S. G. Chugulu, "Incidence of surgical site infections and microbial pattern at kilimanjaro christian medical centre," Annals of African Surgery, vol. 10, no. 1, 2013.
- S. Giri, B. P. Kandel, S. Pant, P. J. Lakhey, Y. P. Singh, and P. Vaidya, "Risk factors for surgical site infections in abdominal surgery: a study in nepal," Surgical Infections, vol. 14, no. 3, pp. 313–318, 2013.
- 10. Manian FA. The role of postoperative factors in surgical site infections: time to take notice. Clin Infect Dis. 2014;59:1272-6.
- Dominioni L, Imperatori A, Rotolo N, Rovera F. Risk factors for surgical infections. *Surg Infect (Larchmt)* 2006;7 Suppl 2:S9–12.
- Aga E, Keinan-Boker L, Eithan A, Mais T, Rabinovich A, Nassar F. Surgical site infections after abdominal surgery: incidence and risk factors. A prospective cohort study. *Infect Dis* (Lond) 2015;47(11):761–767.
- 13. Gastmeier P, Brandt C, Sohr D, Rüden H. Responsibility of surgeons for surgical site infections. Chirurg. 2006;77(6):506-11.
- Vidmer AE, Dangel M. Alcohol-based handrub: evaluation of technique and microbiological efficacy with international infection control professionals. Infect Control Hosp Epidemiol 2004;25:207-9.
- 15. Berard F, Gandon J. Postoperative wound infections: the influence of ultraviolet irradiation of the operating room and of various other factors. Ann Surg 1964;160:1-192.
- 16. Kampf G. The six golden rules to improve compliance in hand hygiene. J Hosp Infect 20 04;56:S3-5.
- 17. Tumia N, Ashcroft GP. Convection warmers a possible source of contamination in laminar airflow operating theatres? J Hosp Infect 2002;52:171-4.
- Brandt C, Hott U, Sohr D, et al. Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery. Ann Surg 2008;248:695-700.
- 19. Center for disease control, National nosocomial infections study quarterly report, first and second quarters. Altlanta, CDC; 1973.
- Jelliffee BD. The assessment of the nutritional status of the community. Geneva: WHO. 1966; 53:63-78.

- 21. Park K. Text Book of Preventive and Social Medicine. 20th ed. M/s Banarsidas Bhanot Publisher; 2009.
- 22. Awoke N, Arba A, Girma A. Magnitude of surgical site infection and its associated factors among patients who underwent a surgical procedure at Wolaita Sodo University Teaching and Referral Hospital, South Ethiopia. Plos one. 2019 Dec 5;14(12):e0226140.
- 23. Hollenbeak CS, Lave JR, Zeddies T, Pei Y, Roland CE, Sun EF. Factors associated with risk of surgical wound infections. American Journal of Medical Quality. 2006 Nov;21 (6_ suppl):29S-34S.
- 24. Badia JM, Casey AL, Petrosillo N, Hudson PM, Mitchell SA, Crosby C. Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. Journal of Hospital Infection. 2017 May 1;96(1):1-5.
- 25. Cassir N, De La Rosa S, Melot A, Touta A, Troude L, Loundou A, Richet H, Roche PH. Risk factors for surgical site infections after neurosurgery: A focus on the postoperative period. American journal of infection control. 2015 Dec 1;43(12):1288-91.
- Daneman N, Lu H, Redelmeier DA. Discharge after discharge: predicting surgical site infections after patients leave hospital. Journal of Hospital Infection. 2010 Jul 1;75(3):188-94.
- 27. World Health Organization. Implementation manual to support the prevention of surgical site infections at the facility level: turning recommendations into practice: interim version. World Health Organization; 2018.
- Ban KA, Minei JP, Laronga C, Harbrecht BG, Jensen EH, Fry DE, Itani KM, Dellinger PE, Ko CY, Duane TM. American College of Surgeons and Surgical Infection Society: surgical site infection guidelines, 2016 update. Journal of the American College of Surgeons. 2017 Jan 1;224(1):59-74.
- 29. Azharuddin JK, Maurya AK, Bharat SS. Clinical study on surgical site infections in a tertiary care hospital. hospital. 2022 Nov 25;7(2):174-9.
- Lee, J. et al. "Elective vs. Emergency Surgery: Impact on Surgical Site Infections." American Journal of Surgery, 2018; 215(4): 752-756.
- National Academy of Science/ National Research Council. Post operative wound infections: Influence of ultraviolet irradiation of the operating room & of various other factor .Annal of Surgery. 1964; 160(supp2):1-132.