Available online on www.ijtpr.com

International Journal of Toxicological and Pharmacological Research 2023; 13(7); 355-360

Original Research Article

A Retrospective Assessment of the Change in Profile of Cutaneous Manifestations of HIV after the Advent of Antiretroviral Therapy

Rajeev Jain¹, Rudra Pratap Singh Kaurav², Rajesh Kumar³

¹Assistant Professor, Department of Skin and VD, Lord Buddha Koshi Medical College and Hospital, Saharsa, Bihar, India

²Assistant Professor, Department of Skin and VD, Lord Buddha Koshi Medical College and Hospital, Saharsa, Bihar, India

³Assistant Professor, Department of Skin and VD, Shree Narayan Medical Institute and Hospital,

Saharsa, Bihar, India

Received: 10-05-2023 / Revised: 14-06-2023 / Accepted: 22-07-2023 Corresponding Author: Dr. Rudra Pratap Singh kaurav Conflict of interest: Nil

Abstract

Aim: The aim of the present study was to determine the prevalence of mucocutaneous conditions among HIV positive patients on antiretroviral therapy.

Material & Methods: A retrospective medical record review of patients attending an out-patient antiretroviral clinic at department of skin and VD were reviewed. 150 records were included in the analysis. These were classified as antiretroviral naïve (100 medical records) and antiretroviral experienced (50 medical records).

Results: Of the 150 patients included in the analysis, 50 (33.34%) were on antiretroviral therapy while 100 (66.66%) were antiretroviral naive. 74 patients were male while 76 were female. For patients on antiretroviral therapy, the majority were in the age group 45 to 55 years. The majority of antiretroviral naive patients were in the age group 35 to 44 years. The mean duration on ART was 66.94 weeks (95% CI 42.86 to 95.85; standard deviation 102.18) for patients on antiretroviral therapy. The median baseline CD4 count was 154 for antiretroviral naive patients and 122 for patients on antiretroviral therapy. 15 patients tested positive for Syphilis and 5 had positive HbsAg tests. There was no significant difference in the CD 4 categories between patients on antiretroviral therapy and antiretroviral naive patients. Our findings were classified into infectious and non-infectious causes based on their etiologies. Viral infections were observed in 60 cases and bacterial infections in 20 cases.

Conclusion: Dermatological complications of HIV/AIDS arise from a variety of conditions with various etiologies. Therefore, careful considerations should be given to timely diagnosis and prompt treatment of dermatological complications among HIV patients. Besides the clinical difficulty in preventing and treating skin diseases, the skin also affects the patient's general appearance and their quality of life.

Keywords: Antiretroviral therapy, Mucocutaneous conditions, Antiretroviral naïve, Clinical stage of HIV, Infectious dermatose

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Human immunodeficiency virus (HIV) infection is an acquired condition that represents a secondary immunodeficiency disorder. With development of antiretroviral drugs, human immunodeficiency virus (HIV) infected individuals live longer and better, both in developed and developing countries. [1] In 2010, 7.7 million HIV-infected population of the world were on antiretroviral therapy which rose to 24.5 million at the end of June, 2019. 62% of HIV infected adult population accessed antiretroviral therapy. [2]

Cutaneous manifestations can often herald findings of immunodeficiency disorders, and various dermatoses are associated with HIV infection. Skin disease can be uniquely associated with HIV infection or acquired immunodeficiency syndrome (AIDS) but is more often due to common disorders that are more severe in HIV patients. The burden of skin disease in developing countries has a serious impact on the quality of life resulting in loss of productivity at work and school and disfigurement. [3,4] Infectious dermatoses, particularly superficial fungal infections, scabies, and impetigo, are the most common skin problems due to overcrowding with a hot and humid environment, poor sanitary conditions, sharing of personal effects or fomites, and poor access to medical supplies and treatment. [5] Antiretroviral therapy has changed the profile of mucocutaneous manifestations of HIV. Incidence, prevalence and severity of some of the dermatological conditions have changed. [6]

A phenomenon that is increasingly seen in patients on antiretroviral therapy is immune reconstitution inflammatory syndrome (IRIS). IRIS may present with new cutaneous manifestations, or worsening of preexisting skin disease. [7] IRIS represents a paradoxical worsening of patients' clinical condition weeks to months after commencing antiretroviral therapy. IRIS is most frequently seen in HIV patients who are co-infected with Mycobacterium tuberculosis (TB), Mycobacterium avium complex Cryptococcus neoformans (MAC), and Cytomegalovirus infection (CMV). [8] About 52-78% of the cases of IRIS involve the skin. [8]

In addition, trichodysplasiaspinulosa (TS); a rare disease of immunosuppressed patients caused by trichodysplasia associated polyomavirus (TSPyV) where dermatological features are of folliculo-centric papules and keratin spicules; may get unmasked after antiretroviral therapy. [9,10] HIV pruritus may increase due to drug reactions because of ART. [11]

Hence the objective of this study was to determine the prevalence of mucocutaneous conditions among HIV positive patients on antiretroviral therapy.

Material & Methods

A retrospective medical record review of patients attending an out-patient antiretroviral clinic at Department of Skin and VD, Lord Buddha Koshi Medical College and Hospital, Saharsa, Bihar, India were reviewed. At enrolment, each patient was given a unique patient identifying number. HIV testing was done by using Determine Rapid HIV test kits, followed by confirmation with Standard Diagnostics (SD) Bioline HIV 1/2 test kit. CD 4 count was measured by flow-cytometry using the PD-FACS count machine. Testing for syphilis was done using Bioline 3.0 syphilis Rapid test. We tested for the Hepatitis B surface antigen (HBsAg) using Standard Diagnostics Bioline HBsAg 3.0 Elisa test kits. Biochemistry tests were done using the Pentra 2000 machine. Hematological tests were done using Sysmex-XT-1800i machine. Data was collected within the duration of 6 months.

Inclusion criteria

Only medical records belonging to patients aged 18 and above, who had a dermatological diagnosis, were considered for inclusion in the analysis. All medical records were required to have results of CD 4 count at baseline, and at the time of dermatological diagnosis, in order to be included.

Exclusion Criteria

Medical records of patients who had dermatological disorder prior to the diagnosis of HIV and/or had undergone dermatological treatments in the 6-12 weeks prior to commencement of antiretroviral therapy were excluded. Patients with co-existent diabetes or kidney disease were not included in the study. Patients having co-existent peripheral vascular disease, connective tissue disease or internal malignancy were excluded.

Sample Size and Data Extraction

150 records were included in the analysis. These were classified as antiretroviral naïve (100 medical records) and antiretroviral experienced (50 medical records). Data was extracted from the medical records using a structured data collection tool. A copy of this is included in the appendix. Data was collected within the duration of 6 months.

Statistical Analysis

Data was analyzed using SPSS version 23. The primary outcome variable was the difference in the frequency and type of cutaneous diseases between patients on antiretroviral therapy, and patients not on antiretroviral therapy. The secondary outcome relationship variable was the between dermatological conditions and the CD4 cell count, and the relationship between dermatological conditions and the clinical stage of the disease. Descriptive statistics were use to describe the demographic and baseline laboratory parameters of the study population. Chi-square test was used to determine association between categorical variables. A P-value less than 0.05 were considered as statistically significant. Fischer's exact p value was used where at least one of the cells had expected frequencies less than 5. For bivariate analysis, cutaneous lesions were classified as either infectious or non-infectious. Eosinophillic folliculitis, popular pruritic eruption, allergic dermatitis, alopecia and hyper pigmentation were classified as noninfectious. The rest of the cutaneous conditions were classified as infectious.

Results

Parameters		Not on ART		On	Total	
		Ν	%	Ν	%	
	15-24	6	6	4	2	10
	25-34	24	24	8	16	32
Age groups (years)	35-44	40	40	15	30	55
	45-55	22	22	16	32	38
	56+	8	8	7	14	15
Sex	Female	48	48	28	56	76
	Male	52	52	22	44	74
	Divorced	18	18	4	8	22
	Married	40	40	24	48	64
Marital status	Single	26	26	10	20	36
	Widowed	9	9	4	8	13
	Unknown	7	7	8	16	15
	Formal Govt	14	14	7	14	21
	Formal Private Sector	15	15	8	16	23
Occupation	Self Employed	42	42	19	38	61
-	Student	6	6	10	5	16
	Unemployed	11	11	4	8	15
	Unknown	12	12	2	4	14
	College/University	38	38	19	38	57
	Never been to school	3	3	2	2	5
Education Level	Primary	10	10	4	8	14
	Secondary	39	39	14	28	53
	Unknown	10	10	11	22	21

Of the 150 patients included in the analysis, 50 (33.34%) were on antiretroviral therapy while 100 (66.66%) were antiretroviral naive. 74 patients were male while 76 were female. For patients on antiretroviral therapy, the majority were in the age group 45 to 55 years. The majority of antiretroviral naive patients were in the age group 35 to 44 years.

Parameter	On ART	Mean	SE	95 % CI for		Me- dian	SD	Skewness	Kurtosis
				mean					
Weeks on ART	Yes	66.94	12.48	42.86	95.85	34	102.18	1.901	4.936
Baseline	No	12.38	0.266	11.82	12.88	12.5	2.48	-0.154	0.644
Hb	Yes	12.38	0.286	10.72	12.96	10.5	2.22	-0.922	2.708
Baseline	No	33.04	3.27	24.56	36.44	25.5	28.32	3.716	18.2
ALT	Yes	27.43	1.88	23.67	31.25	22.2	14.02	1.324	1.402
	No	96.74	8.52	83.7	114.76	88.62	62.64	6.694	51.155
Creatinine	Yes	86.54	4.976	76.54	96.44	82.28	36.44	3.397	16.504
Baseline	No	43.72	3.603	36.54	50.90	33.70	31.21	2.452	6.982
AST	Yes	42.79	4.051	34.62	50.96	34.75	26.87	1.697	2.857
Baseline	No	216.44	22.598	172.48	258.32	154	198.2	1.194	1.806
CD4 count	Yes	165.3	20.393	124.44	206.11	122	155.31	1.430	1.782

Table 2: Baseline parameters of study participants

The mean duration on ART was 66.94 weeks (95% CI 42.86 to 95.85; standard deviation 102.18) for patients on antiretroviral therapy. The median baseline CD4 count was 154 for antiretroviral naive patients and 122 for patients on antiretroviral therapy.

Parameters		Not on ART N (%)	On ART N (%)	Total
	Negative	48 (48)	19 (38)	67
	Not tested	40 (40)	28 (56)	68
Baseline RPR	Positive	12 (12)	3 (6)	15
	Total	100 (100)	50 (100)	143 (100)
	Negative	45 (45)	16 (32)	61
	Not tested	52 (52)	32 (64)	84
Baseline HBsAg	Positive	3 (3)	2 (4)	5
	Total	100 (100)	50 (100)	143 (100)

 Table 3: Baseline parameters of study participants

15 patients tested positive for Syphilis and 5 had positive HbsAg tests.

Table 4: CD4 count of study population having dermatological conditions in both groups					
CD4 cell count	Not on ART N (%)	On ART N (%)	P value		
<200	52 (52)	25 (50)	0.375		
200-350	12 (12)	13 (26)	0.232		
>350	36 (36)	12 (24)	0.912		
Total	100	50			

There was no significant difference in the CD 4 categories between patients on antiretroviral therapy and antiretroviral naive patients. Among antiretroviral naive patients 52% had dermatological conditions at CD4 count below 200. 12% of antiretroviral naïve patients had dermatological

conditions at CD4 count between 200 and 350; while 36% had dermatological conditions at CD4 count above 350. Among patients on antiretroviral therapy, 50% had CD4 count below 200, 26% had CD4 count between 200 and 350, while 24% had CD4 count above 350.

Type of cutaneous lesions	n	95% CI
Oral	78	48.50-60.25
Mucosal	90	55.40-65.70
Cutaneous	85	52.28-64.84
STI	40	21.98-31.41
Immunologic	42	22.8-32.10
Tumoral	12	5.35-12.22
Reaction	1	0.08-2.07
Viral	60	32.44-42.76
Bacterial	20	13.15-21.21
Mucotic/parasitic	90	50.40-62.89

 Table 5: Type of cutaneous manifestation

Our findings were classified into infectious and noninfectious causes based on their etiologies. Viral infections were observed in 60 cases and bacterial infections in 20 cases.

Discussion

The skin problems here are further compounded by the high prevalence of human immunodeficiency virus (HIV) which commonly causes skin lesions. [12] It was reported that approximately 90% of people living with HIV have skin changes and symptoms during the course of their disease. [13] Skin diseases are significantly higher among HIVpositive than HIV-negative individuals. [14] Differences in skin pigmentation, climate, hygiene, and genetic, environmental, demographic, and behavioral factors cause different clinical presentations and epidemiologic patterns of HIVassociated skin disease in different countries. [15] Skin findings are regarded by the WHO as useful in assessing severity of HIV infection in patients in resource-limited environment. [16]

Skin disease can be uniquely associated with HIV disease, but more often represents common disorders, which may be more severe and recalcitrant to treatment. The spectrum of skin conditions includes skin findings associated with

primary HIV infection and a broad range of skin problems related to the immune deficiency of advanced AIDS. [17] Knowledge of the skin and mucosal signs of HIV/AIDS is important, as mucocutaneous lesions are usually the first manifestation of HIV, ensures early diagnosis and prompt treatment, and reveals complications as HIV causes atypical and severe presentations of these conditions. [18] Of the 150 patients included in the analysis, 50 (33.34%) were on antiretroviral therapy while 100 (66.66%) were antiretroviral naive. 74 patients were male while 76 were female. For patients on antiretroviral therapy, the majority were in the age group 45 to 55 years. The majority of antiretroviral naive patients were in the age group 35 to 44 years. The mean duration on ART was 66.94 weeks (95% CI 42.86 to 95.85; standard deviation 102.18) for patients on antiretroviral therapy. The median baseline CD4 count was 154 for antiretroviral naive patients and 122 for patients on antiretroviral therapy. 15 patients tested positive for Syphilis and 5 had positive HbsAg tests.

There was no significant difference in the CD 4 categories between patients on antiretroviral therapy and antiretroviral naive patients. Among antiretroviral naive patients 52% had dermatological conditions at CD4 count below 200. 12% of antiretroviral naïve patients had dermatological conditions at CD4 count between 200 and 350; while 36% had dermatological conditions at CD4 count above 350. Among patients on antiretroviral therapy, 50% had CD4 count below 200, 26% had CD4 count between 200 and 350, while 24% had CD4 count above 350. Various other parameters like demographic profile, stages of illness and CD4 count of patients were analyzed in lieu of dermatological features in both groups. HIV infection typically affects young and middle age men and women in the reproductive age group was also finding of this study like other studies. [19,20] More than 50% of the study population can be classified as having AIDS, as they had a CD4 count less than 200. The study showed that patients on antiretroviral therapy had lower baseline median CD4 count as compared to those on antiretroviral therapy. This may have been due to previous guidelines which recommended antiretroviral therapy only for patients with CD4 count below 200. [21] Dermatologic manifestations can be considered as good clinical indices to predict the status of immunity in HIV-positive patients in less developed countries. [22] At present, there are ample amount of evidence about the relationship between dermatologic manifestations and weakened immune system in adults and children. CD4 cell count is a proper criterion for the diagnosis of a weakened immune system or disease progression. KS can be transmitted through sexual contact which is more common in homosexuals than heterosexuals. Anal sex is a major risk factor. The skin infections in

people with HIV/AIDS which exacerbate and become resistant to treatment could be a sign of disease progression. [23] Those involved in health care of HIV patients must therefore know the type, pattern, and prevalence of skin diseases in their locality.

Our findings were classified into infectious and noninfectious causes based on their etiologies. Viral infections were observed in 60 cases and bacterial infections in 20 cases. Mucocutaneous diseases have been correlated with CD4 counts in many studies, while few studies documented the clinical correlation of these diseases to the WHO clinical stages. Cutaneous manifestations of HIV disease may result from HIV infection itself or from opportunistic disorders secondary to the decline in immunocompetence from the disease. [24,25]

Conclusion

Dermatological complications of HIV/AIDS arise from a variety of conditions with various etiologies. Therefore, careful considerations should be given to timely diagnosis and prompt treatment of dermatological complications among HIV patients. Besides the clinical difficulty in preventing and treating skin diseases, the skin also affects the patient's general appearance and their quality of life. The high prevalence of skin diseases, severity of complications, and overall influence on the patient's quality of life highlight the need for further investigation of the role of the immune system in dermatologic manifestations among HIV patients.

References

- 1. Oguntibeju OO. Quality of life of people living with HIV and AIDS and antiretroviral therapy. HIV AIDS. 2012;4:117-24.
- 2. Global HIV and AIDS statistics- 2019 fact sheet', UNAIDS 2019.
- 3. World Health Organization. UNAIDS: Global Report: UNAIDS report on the global AIDS epidemic. Geneva: WHO. 2010;10.
- Mankahla A, Mosam A. Common skin conditions in children with HIV/AIDS. American journal of clinical dermatology. 2012 Jun;13 (3):153-66.
- Cedeno-Laurent F, Gómez-Flores M, Mendez N, Ancer-Rodríguez J, Bryant JL, Gaspari AA, Trujillo JR. New insights into HIV-1-primary skin disorders. Journal of the International AIDS Society. 2011 Dec;14(1):1-1.
- Bwalya IC, Lakhani S, Aldridge C. Change in profile of cutaneous manifestations of HIV after the advent of antiretroviral therapy: a retrospective analysis. International Journal of Research. 2021 Nov;7(6):755.
- Huiras E, Preda V, Maurer T. and Whitfield, M. Cutaneous manifestations of immune reconstitution inflammatory syndrome. Current Opinion HIV AIDS. 2008;3(4):453-60.

- Osei-Sekyere B, Karstaedt AS. Immune reconstitution inflammatory syndrome involving the skin. Clinical Experiments in Dermatology. 20 10; 35(5):477-81.
- 9. Sidhu N, McCutchan JA. Unmasking of PML by HAART: unusual clinical features and the role of IRIS. J Neuroimmunol. 2010;219(1):1 00-4.
- DeCrescenzo AJ, Philips RC, Wilkerson MG. Trichodysplasia spinulosa: A rare complication of immunosuppression. JAAD Case Rep. 2016 ;2(4):307-9.
- 11. Gelfand JM and Rudikoff D. Evaluation and treatment of itching in HIV-infected patients. Mount Sinai J Med. 2001;68(5):298-308.
- 12. Rodgers S, Leslie KS. Skin infections in HIVinfected individuals in the era of HAART. Current opinion in infectious diseases. 2011 Apr 1;24 (2) :124-9.
- 13. Bolognia J, Jorizzo J, Schaffer J. Dermatology. 3rd ed. Dong Cheng China: Elsevier; 2012.
- 14. Kaushik SB, Cerci FB, Miracle J, Pokharel A, Chen SC, Chan YH, Wilkin A, Yosipovitch G. Chronic pruritus in HIV-positive patients in the southeastern United States: its prevalence and effect on quality of life. Journal of the American Academy of Dermatology. 2014 Apr 1;70(4):659-64.
- Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM. Methicillinresistant Staphylococcus aureus disease in three communities. New England Journal of Medicine. 2005 Apr 7;352(14):143 6-44.
- Buehlmann M, Frei R, Fenner L, Dangel M, Fluckiger U, Widmer AF. Highly effective regimen for decolonization of methicillin-resistant Staphylococcus aureus carriers. Infection Control & Hospital Epidemiology. 2008 Jun;29(6):510-6.
- 17. Vyas KJ, Shadyab AH, Lin CD, Crum-Cianflone NF. Trends and factors associated with initial and recurrent methicillin-resistant Staphylococcus aureus (MRSA) skin and softtissue infections among HIV-infected persons: an 18-year study. Journal of the International Association of Providers of AIDS Care (JIAPAC). 2014 May;13(3):206-13.

- Kazem S, Van der Meijden E, Feltkamp MC. The trichodys plasiaspinulosa-associated polyomavirus: virological background and clinical implications. Apmis. 2013 Aug;121(8):770-82.
- Singh A, Thappa DM, Hamide A. The spectrum of mucocutaneous manifestations during the evolutionary phases of HIV disease: an emerging Indian scenario. The Journal of dermatology. 1999 May;26(5):294-304.
- Sud N, Shanker V, Sharma A, Sharma NL, Gupta M. Mucocutaneous manifestations in 150 HIV-infected Indian patients and their relationship with CD4 lymphocyte counts. International journal of STD & AIDS. 2009 Nov; 20(11):771-4.
- 21. Fox MP, Sanne IM, Conradie F. Initiating patients on antiretroviral therapy at CD4 cell counts above 200 cells/microl is associated with improved treatment outcomes in South Africa. AIDS. 2010;24(13):2041-50.
- Wieland U, Silling S, Hellmich M, Potthoff A, Pfister H, Kreuter A. Human polyomaviruses 6, 7, 9, 10 and Trichodysplasiaspinulosa-associated polyomavirus in HIV-infected men. Journal of General Virology. 2014 Apr 1;95 (4):928-32.
- Yang C, Mosam A, Mankahla A, Dlova N, Saavedra A. HIV infection predisposes skin to toxic epidermal necrolysis via depletion of skin directed CD4+ T cells. Journal of the American Academy of Dermatology. 2014 Jun 1;70(6):1096-102.
- 24. Smith KJ, Skelton HG, Yeager J, Ledsky R, NG TH, Wagner KF, Military Medical Consortium for the Advancement of Retroviral Research (MMCARR). Increased drug reactions in HIV-1-positive patients: a possible explanation based on patterns of immune dysregulation seen in HIV-1 disease. Clinical and experimental dermatology. 1997 May 1;22(3):118-21.
- 25. Jacobelli S, Laude H, Carlotti A, Rozenberg F, Deleuze J, Morini JP, Franck N, Gorin I, Avril MF, Dupin N. Epidermodysplasia verruciformis in human immunodeficiency virus–infected patients: A marker of human papillomavirus–related disorders not affected by antiretroviral therapy. Archives of dermatology. 2011 May 16;147(5):590-6.