Proton Pump Inhibitors and Melanocytes

Patil T R1*, Patil S2, Patil A3, Patil S T4

1Department of Pharmacology Bharati Medical College and Hospital Sangli, Maharashtra, india.
2Department of Public Health Dentistry School of Dental Sciences Karad, Maharashtra, india.
3MDS Oral pathologist.
4MBBS, DGO Gynecologist.

Available Online: 10th August, 2016

ABSTRACT
Melanocytic disorders comprise of vitiligo as well as melanoma both of which constitute the extreme ends of this spectrum. Also both of these have proven to be formidable challenges in terms of treatment. Hence a variety of drugs have undergone experimentation in this field and its benefits and side effects discussed. Proton pump inhibitors (PPI) are popular class of drugs used in gastroesophageal disorder management. These drugs have gained popularity due to their efficacy and minimal toxicity. This article is an attempt to elucidate the various mechanisms involving role of PPIs in the above mentioned melanocytic disorders.

Keywords: Chemoresistance, Melanocytes, Melanoma, PPI, Vitiligo.

INTRODUCTION
Melanocytes are present in the basal cells of epidermis which are specialized in the melanin synthesis. Melanosome is a lysosome related organelle which synthesizes melanin. Melanocytic disorders comprise of vitiligo as well as melanoma which constitute the extreme ends of the spectrum. Both of these conditions have been proven to be formidable challenges in terms of treatment. Hence, variety of drugs have undergone experimentation in this field to explore their benefits and side effects.

Proton Pump Inhibitors and Vitiligo
Drugs like Proton pump inhibitor (PPI) have been tried in the treatment of melanoma and other tumors to minimize chemoresistance and achieve enhanced therapeutic effect. PPI have also been pointed as a culprit for induction of vitiligo. Many other drugs when used therapeutically to treat certain diseases have been known to induce or worsen vitiligo as an untoward effect. Based on the analysis of published studies various classes of drugs have been correlated with vitiligo.

Meta analysis done by Curzytek et al in 20071 enumerated the drugs inducing vitiligo as follows
- Anticonvulsants – carbamazepine, valproic acid, flunazepam.
- Antimalarial drugs – chloroquine and quinine.
- Biological drugs – interleukin-2, interleukin-4, interferon alpha, infliximab.
- Drugs for parkinsons disease- tolcapone, levodopa.
- External drugs for alopecia – diphenycprone, squaric acid, dibutylester.
- Other drugs – fluphenazine, clofazamine, dopamine, hydroquinone, monobenzyl ether ester, gancyclovir, beta blockers, lispro insulin.

Pathophysiologic mechanisms of drug induced vitiligo suggested in the reported cases are as follows
- Drug induced activation of cytotoxic T cells directed against melanocyte antigens like - MART-1/Melan A, gp 100, TRP-1, TRP-2.
- Neural hypothesis - melanocytic injury arising as a result of excess release of norepinephrine a melanocytotoxin from the autonomic nerve endings into microenvironment of melanocytes, injures the cells. Enzyme monoamino oxidase, a catecholamine degrading enzyme is induced by norepinephrine which causes hydrogen peroxide toxicity around the melanocytes.
- Direct, cytotoxic effects of drugs on melanocytes-apoptosis1
- Melanocytic damage due to altered melanosome membrane permeability which normally prevents diffusion of toxic melanin precursors in to cytoplasm and may cause melanocyte damage2. Defect either acquired or inherited in the membranes of melanosomes results into loss of melanocytes and cause vitiligo.
- Autoimmune mechanism – autoimmune loss of melanocytes from the involved area lead to vitiligo which is frequently associated with other autoimmune diseases like rheumatoid arthritis, type 1 diabetes mellitus, addisons disease and was correlate to the genetic susceptibility2.

Apart from above mentioned drugs PPI have also been observed to induce or worsen vitiligo lesions in the genetically predisposed patients. They are promising and popular drugs for the treatment of gastro oesophageal disorders being more effective with negligible adverse effects. PPI are prodrugs which get activated in acidic pH. Recent evidence suggests that PPI are delivered not only

*Author for Correspondence: drpatiltr@gmail.com
to proton pumps in the gastric mucosa but also to the other acidic compartments like skin in case of vitiligo patients. Melanocytes have H+ K+ ATPase at cytoplasmic membrane and melanosomes have vacuolar H+ K+ ATPase. Vitiligo is an acquired depigmentation disorder of skin characterized by whitish patches. Schalleuter and Rokus in 2007 and Holla et al in 2011 have reported four and one patients respectively of vitiligo who developed new depigmented lesions following oral administration of PPI despite successful treatment with UVB therapy. The mechanism attributed for this was the blockade of H+ K+ ATPase on melanocytic cytoplasmic receptors. Another more accepted explanation was apoptotic melanocytic loss. PPI make melanosomes prone for apoptosis by modifying pH gradient in melanocytes and enhancing oxidative stress in melanocytes. Melanogenesis is a complex process which involves multiple metabolic signals and enzymes in the human melanocytes. Melanin pigment is derived from hydroxylation of L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA) by enzyme tyrosinase (TYR) with two copper ions at the active centre. Melanin biosynthesis is modulated by expression of microphthalmia associated transcription factor (MITF) which is an integral transcription factor regulating melanocyte differentiation and pigmentation. MITF also regulates the transcriptional expression of the TYR, TYR related protein -1 (TRP-1) and TYR related protein-2 (TRP-2) genes in melanocytes. An in vitro and in vivo study was conducted by Shin et al in 2014 to assess the effect of PPI on melanogenesis. In vitro study it was observed by these authors that, PPI decreased melanin synthesis but they could not prove apoptosis as a mechanism which was seen in other studies as there was no change in apoptotic markers like bcl 2 and bax after PPI treatment. Similarly, they could not confirm the H+ K+ ATPase inhibition modulating melanogenesis. Thereby they support the theory of tyrosinase enzyme inhibition as an explanation for worsening of vitiligo. The Esmoprazole (ESOM) a prototype of PPI can trigger vitiligo through an inhibitory effect on melanosome maturation and also add oxidative stress in melanocytes of vitiligo. PPI also block MNK a P type ATPase which is localised in a transgolgi network and helps in transportation of copper to tyrosinase which is synthesized within the secretory pathway. But this did not explain satisfactorily depigmentation as a main pathology in vitiligo, as there is a loss of melanocyte rather than reduced melanogenesis, Hence, the later can be considered as an epiphenomenon. But Schareuter K et al postulated that melanocyte are not immediately destroyed in vitiligo but are progressively suppressed by inhibition of melanisation which further induces death of melanocytes. Matsui MS et al (2015) demonstrated that treatment with omeprazole reduced melanogenesis significantly by inhibiting ATP-7 gene expression as well as it increased the degradation of tyrosinase. Bae et el (2015) studied the effect of PPI on melanogenesis. They concluded that PPI decreased melanogenesis. Rabeprazole and not other PPI strongly inhibited mushroom tyrosinase in dose dependent manner. All the studied PPI like rabeprazole, ESOM, lansoprazole and pantoprazole inhibited copper chelating activity. Treatment of melanin a cell with 100 µM concentration of PPI significantly reduced melanin content of melanin cells. But it did not manifest into cytotoxic effects. Rabeprazole strongly supressed the mRNA expression of each of melanogenesis associated genes (TYR, TRP-1, TRP-2 and MITF). Other PPI don’t have effects of TYR expression levels which indicates they may be reducing melanogenesis by some other mechanism like via copper chelating activity and not via effects on TYR activity. Rise in pH by V-ATPase in melanosomes enhances tyrosinase activity and facilitates melanogenesis. PPI activity on melanosome V-ATPase should stimulate melanogenesis as they raise melanosome pH. On the contrary PPI are found as culprit for initiation and progression of the vitiligo by inhibiting melanogenesis. Hence other mechanisms like apoptosis of melanocytes, increase in oxidative stress and downregulation of genes responsible for melanogenesis (TYR, TRP-1, TRP-2, and MITF) may be playing role in reduced melanocyte activity leading to vitiligo. In vitro studies by Shin JM et al (2014) revealed decreased melanin content by inhibition or negative regulation of tyrosinase activity and tyrosinase related protein-1 (TRP-1). Hence it is possible that despite rise in melanosome pH by PPI, they may be inhibiting tyrosinase activity directly irrespective of pH modulation.

Role of PPI in modifying chemoresistance in malignancy
Modification of pH of melanosomes by PPI has been proposed as a therapeutic tool in treating tumors like melanoma by overcoming chemo-resistance. V-ATPase is large multunit proton pumps distributed within plasma membrane and membranes of some organelles such as lysosomes, endosomes and secretory vesicles. Their housekeeping function consists of acidifying lysosomes, endosomes and phagosomes compartments and extracellular environment in certain specialized cells. Mammalian V-ATPase are composed of 13 different subunits which are divided into 8 peripheral proteins called as catalytic V1 domain and 5 membrane intrinsic proteins also called as V0 domain. V-ATPase is referred to formally as ATP-6. V1 subunits are A, B, C, D, E, F and H and V0 subunits are a,b,c,d, and e, V1 is responsible for ATP hydrolysis and V0 provides transmembrane transport of protons across cell membrane to extracellular milieu or across the organelle membrane to intracellular compartments making extracellular pH acidic, intracellular cytosolic pH alkaline around 7 and lysosomal pH acidic. This pH regulation is required for regulation of physiological functions of cell16,17,19. V-ATPase has close relation to several diseases and most important being tumor where it enhances carcinogenesis, malignant transformation, growth, proliferation, cancer progression invasion and metastasis. It also correlates to the acquired multidrug resistance. Hence V-ATPase inhibition is considered as effective target for anticancer therapy. Agents altering tumor pH homeostasis, exert antitumor effect by inhibiting tumor growth, metastasis and by reverting drug resistance. Subunit c of V-ATPase is
correlated with proliferation and metastasis of tumor cells. In vitro or in animal models metastasis was found to be suppressed by inhibition of V-ATPase c subunit through siRNA. Most cancer cells predominantly derive energy by high rate of glycolysis leading to lactic acid fermentation in the cytosol. This is in contrast with majority of the normal cells which have low rate of glycolysis followed by oxidation of pyruvate in the mitochondria. The Warburg effect is a result of damage to mitochondria in a cancer cells or could be an adaptation to the low oxygen environment in the tumor cells. In tumor cells there is a shift of energy production from oxidative phosphorylation to aerobic glycolysis known as “Warburg effect” leading to intracellular acidosis which is not conducive for their survival. For cancer cells survival and to get protected from self digestion intracellular proton needs to be extruded to maintain cytosolic pH neutral to alkaline. V-ATPases are most important among the four types of pH regulators. The other three being Na+ H+ exchanger, bicarbonate transporters, proton/lactate symporter. Proton pumps in the tumor cells are essential for V-ATPases to regulate cytosol pH. Tumor cell needs to extrude excessive cytosolic acid for its survival and to protect from apoptosis. V-ATPase plays a major role by upregulation of proton pumps. Suppression of this proton extrusion by inhibiting V-ATPase make the tumor cell more susceptible to cell death than normal cell. The inhibition of V-ATPase may induce apoptotic cell death in several human cancer cell lines like liver cancer, breast cancer, gastric cancer, and B cell hybridoma cell. The inhibition of V-ATPase will decrease cytosolic pH, increase lysosomal pH affecting lysosomal function. V-ATPase induced apoptosis is either through lysosome mediation or nonlysosomal one. Lysosomal mediated apoptosis is due to increased lysosomal pH and permeability triggering release of cathepsin D and activation of caspase. Inhibition of V-ATPase is known to induce apoptosis by suppressing anti apoptotic bcl-2 or bcl-xl and facilitates the caspase independent apoptotic pathway. Sometimes mitochondria and lysosomes are affected by V-ATPase inhibition resulting into apoptosis via caspase pathway or ROS dependent manner due to ROS accumulation. It has also been reported that V-ATPase are known to regulate tumor associated mTOR (mammalian target of rapamycin) or Wnt/β-catenin signal pathway. V-ATPase activity is required for notch activation which is a common hallmark of increasing number of cancers. Tumor metastasis initiates with breaking through basement membrane, degrading extracellular matrix, initiating angiogenesis and invasion of vascular system. The invasive phenotype is related to highly active V-ATPase causing activation of proteases and breaking down of extracellular matrix. Several types of tumors including melanoma, pancreatic cancer and breast cancer are reported to be correlated with the improper action of V-ATPase. Active V-ATPase enhances tumor invasion and metastasis in extracellular acidic milieu by activating proteases. The plasma membrane V-ATPase are responsible for extruding cytosol protons to the extracellular space resulting into low extracellular pH which is required for activation of several types of proteases including cathepsin, metalloproteases and gelatinases. Activated extracellular cathepsin degrades extracellular matrix proteins and activates other secreted proteases like matrix metalloprotease causing invasion and metastasis. The plasma membrane V-ATPase gets recruited at the proceeding edge of cancer cells by interaction with F-actin which produces acidic microenvironment at the edge. Intracellular V-ATPase also facilitates the invasion and metastasis possibly due to modulating proteolytic activity of cathepsin or matrix metalloproteases within lysosomes or secretory vesicles and shifting the proteases containing secretory vesicles to the cell surface to be extracytosely. Thus cutting edge is conferred upon tumor cells by accumulation of acidic concentration of plasma membrane, V-ATPases and activated proteases crown on the proceeding surface of metastatic cells. Acquired multidrug resistance (MDR) limits the therapeutic potential and invites relapse. MDR is known to correlate with family of ATP binding cassette (ABC) proteins P glycoprotein (Pg). V-ATPase is also known to play role in MDR in pg independent manner. Inhibition of V-ATPase not only suppresses tumor cells directly but also sensitizes tumor cells to chemotherapy. It is documented that pre-treatment with PPI sensitised tumor cells for cisplatin, 5-fluouracil and vinblastin. Increase in both external pH and pH of cytosol of organelle by PPI, enhanced cytosolic retention of these drugs. Oral pretreatment with omeprazole sensitised human solid tumors to cisplatin. V-ATPase produces multidrug resistance by neutralizing drug intracellularly and extracellularly, decreasing drug internalization, altering DNA repair and inhibition of apoptosis. Tumor microenvironment pH influence uptake of anticancer drugs. As extracellular pH in tumors is low and intracellular pH is neutral to alkaline, weakly basic drugs having acid dissociation constant of 7.5-9.5 such as doxorubicin, mitoxantrone, vinblastin and vincristine get protonated causing decreased cellular uptake. In vitro or animal models studies indicate that substantial improvement takes place in therapeutic effectiveness of antitumor drugs by extra cellular alkalinization leading to the enhanced cellular drug uptake and cytotoxicity. Reduced intracellular accumulation of antitumor drugs may also be due to the role of V-ATPase as a cooperating factor to ATP dependent membrane protein that functions as drug efflux pumps. The drugs which are known to change tumor pH are prone to be having antitumor effects by reverting drug resistance and inhibiting tumor growth and metastatic progression. These have become suitable therapeutic adjuncts. Several studies have shown that PPI like omeprazole, esomprazole, pantoprazole have anti neoplastic activity against human hematopoietic and solid tumors. PPI being prodrugs get activated in tumor cell by acidic pH. PPI treatment changes tumor pH gradient which leads to drug retention and traffic of acidic vesicles in human melanoma and gastric carcinoma. PPI have shown to decrease chemoresistance in drug resistant tumors and can induce direct tumor cell killing. Hence PPI have
been proposed as valid and feasible approach with relatively low toxicity and potential selectivity for tumor cells. Chemically modified omeprazole containing NAC molecule (NACO) to increase its bioavailability has been shown to induce apoptosis in human melanoma.60,61 Previously PPI have been shown to induce caspase independent and partially ROS dependent cell death in human B cell tumors. PPI also induce caspase dependent cell death in human melanoma as a result of accumulation of ROS. Both mitochondrial and NADPH oxidase seems to be triggering ROS accumulation in ESOM treated cells. ESOM induced accumulation of hydrogen peroxide and superoxide radicals in melanoma cells as shown by DHR123 and HE fluorescence respectively in the study done by M L Marino et al. (2010)61 ESOM dependent induced apoptosis is caspase dependent. It was also observed that inhibition of NADPH oxidase by diphenylene iodonium (DPI) induce a significant reduction of ESOM induced cell death in Me30966 cells. DPI is known to be pharmacological inhibitor of NADPH.61 ESOM treated melanoma cells show massive vacuolization which was noted to occur in cells before apoptosis. ESOM have been shown to induce accumulation of autophagosomes in melanoma cells which is ROS mediated. This leads to decreased autophagic flux. Autophagy is a cellular catabolic pathway leading to lysosomal degradation and recycling of proteins and organelles and represents a defense mechanism in cancer cells under metabolic stress. It is an adaptive survival mechanism to overcome drug induced cellular stress and cytotoxicity and also change in pH homeostasis induced by PPIs. Pretreated melanoma cells with ESOM use autophagic pathway as a defense and adaptive mechanism; hence it is rational to combine PPI therapy and autophagy inhibitors for treatment of melanoma.61 Recently the concept of targeting extracellular tumor Ph (pHe) as an antitumor therapeutic strategy was supported by several studies. Alkalization of tumor pHe with bicarbonate has shown to inhibit metastasis and enhance the response to chemotherapy62,63,64. The use of pH sensitive lytic peptides and nanotechnology was suggested to selectively target tumor tissues.65,66.

CONCLUSION
Considering the substantial available evidence regarding the role of PPI’s in melanoma we suggest that this aspect needs to be explored further as it has a lot of potential as an adjunct in the treatment of chemoresistant melanomas and other tumors. It is also important to understand that clinicians today generously co-prescribe PPIs in order to counteract the hyperacidity caused due to other drugs. We would like to suggest that one needs to exercise caution while including PPIs in their treatment portfolio and should keep a track of the duration of treatment and inadvertent side effects if any observed especially among genetically predisposed patients.

REFERENCES


