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ABSTRACT 
Quercetin is a flavonoid able to modify the metabolism of carcinogen benzo(a)pyrene in human intestinal cells but it is 

not known if its metabolism is affected by the presence of B(a)P. In this study the phase-2 metabolism and transport rate 

of quercetin has been studied using CaCo-2/TC7 cell line, model of human enterocytes, co-treated with B(a)P.  Quercetin 

and its main metabolites, sulfated and glucuronidated, were quantified at different times (from T0 to T 24h), using HPLC 

with diode array and MS detection. This study showed that quercetin metabolism in CaCo-2/TC7 cells co-treated with 

B(a)P presents some differences respect to control in the formation of sulphates coniugates, more evident in the last time 

of analysis. The transport study, instead, confirmed a stronger influence of BaP with an increased rate of glucuronidation 

and sulfation of quercetin in both cellular side. The effects of B(a)P observed on phase-2 metabolism and transport rate 

of quercetin, by in vitro model of human enterocytes, put in evidence its possible influence, consequently, also on 

biological activities of this flavonoid. 
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INTRODUCTION 
Diet represents a significant source of exposure to 
contaminants and food–borne carcinogens as 

benzo(a)pyrene but, at the same time, a font of 

assumption of phytochemicals, as quercetin, with 

protective effects for human health. Many studies showed 

a correlation between high dietary intake of cooked meat 

and an increased risk of cancer of colon, pancreas, liver, 

prostate and breast1 due to the presence of food-borne 

cancerogens and mutagens.  

Benzo(a)pyrene (BaP) is a marker of cancerogenicity of 

polycyclic aromatic hydrocarbons (PAHs), produced 

during cooking processes (drying, boiling, cooking, 

grilling, roasting, toasting, smoking)2-3 for combustion of 

organic matter. Due to their physical and chemical 

properties, BaP has an high solubility in lipids, can 

migrate through the food chain into hydrophobic 

compartments and be retained by food rich in fats4-6. At 

the same time, it could be present in food as consequence 
of environmental pollution7, in fact substantial amounts 

of this toxic compound were found also in vegetable 

foods (bread, cereals, grains, fruits, etc.)8-9. 

Epidemiological studies, instead, have shown that diets 

rich in fruit and vegetables are associated with a lower 

risk of developing food-related malignancies10-11, for the 

presence of phytochemical compounds (polyphenols, 

flavonoids, antocyanidines, isotyocyanates ect.), 

considered natural anti-carcinogens12-14.  Among these 

phytochemicals, quercetin is a major flavonoid present in 

various fruits (as blackberry, mulberry, apple, etc.) and 

vegetables (as onion, broccoli, etc.), with a wide range of 
in vitro biological activities15, such as antinflammatory, 

antioxidant anticancer, antidiabetic, etc.16-18. 

Therefore, at present, there is an increasing interest to 

assess the fate of food contaminants and phytochemical 

compounds after food ingestion and their possible 

interactions in the gastrointestinal tract. Particularly, the 

CaCo-2 cell line, is widely used as a model to study 

human intestinal transport and metabolism, 

biotransformation and permeability19. The CaCo-2 cell 

line, established from a human colon adenocarcinoma, 

has retained the ability to differentiate into polarized 

epithelial monolayers, shows numerous biochemical and 

morphological characteristics of enterocytes (e.g., 

formation of microvilli, tight junctions and desmosomes, 

expression of brush-border enzymes such as sucrase-

isomaltase)20 and expresses various phase-1 and phase-2 

enzymes. In particular, the CaCo-2 sub-clone TC7, 
generated by passaging CaCo-2 cells 198 times21, is 

characterized by a selection of faster growing cells, 

shorter population doubling time, higher cell density and 

full differentiation after a shorter period of time, in 

respect to the parent population. 

The absorption and metabolism of many bioactive 

compounds, like quercetin, has been studied in CaCo-2 

cell line22-23. Quercetin aglycone is initially absorbed in 

gastrointestinal tract by passive diffusion24-25, then 

hydrolyzed and further conjugated within the enterocytes  
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by enzymes, to form a number of phase-2 conjugates, 

most notably sulphates and glucuronides26-28. Finally 

quercetin conjugates are excreted by the liver, reducing 

their bioavailability.  

Similarly, BaP transport29-30, uptake and metabolism31 

have been investigated in CaCo-2 cell line32-33. Some 

authors have studied the effects of polyphenols and 

flavonoids34-35, like ellagic acid36 and chrysin37, on 

metabolic activation13, cellular excretion38 and transport39 

of benzo(a)pyrene but no data are reported on influence 

of this carcinogen on metabolic behaviour of 

phytochemical compounds as quercetin. The aim of this 
study, therefore, is to evaluate the effects of BaP on phase 

2-metabolism of flavonoid quercetin and its cellular 

transport rate in CaCo-2 cell line, co-exposed to this toxic 

compound. 

 

MATERIALS and METHODS 
CaCo-2/TC7 cell culture 

The clonal line CaCo-2/TC7, derived from parental 

CaCo-2 cells, obtained from Dr Monique Rousset 

(INSERM, Paris, France), were cultured between 

passages 32 and 51. Cells were grown in Dulbecco 

Modified Eagle's Medium (DMEM) with 1% non-

essential amino acids, 1% L-glutamine, 100 IU/ML 

penicillin and 100 μg/ml streptomycin, supplemented 

with 20% (v/v) foetal calf serum (FCS). At first, cells 

were sub-cultured 5-6 days post seeding. Cell were 

seeded at 2-4 × 104 cells in 75 cm2 flask and sub-cultured 

5-6 days post seeding when the cells reached 80% 

confluency observed under a light microscope.  Finally, 

cells were seeded at 2-4 × 104 cells per cm2 on 10 cm 

dishes (growing area 75 cm2) and allowed to grow until 
21 days post confluent, changing media 3 daily.  

Chemicals 

Quercetin standard solution was purchased from 

Extrasynthese, 69727 Genay Cedex, France. Quercetin-3-

glucuronide (Q3glA), quercetin-3’-glucuronide (Q3’glA), 

quercetin-4-glucuronide (Q4glA), quercetin-7-

glucuronide (Q7glA), and 3-methylquercetin-3-

glucuronide (isorhamnetin-3-glucuronide, IR3glA were 

chemically synthesized at the Institute of Food Research,  

 
Figure 1: Chromatographic profile of quercetin and its main metabolites in co-treatment with B(a)P. 

1. quercetin-7-glucuronide (Q-7-GlcA);  

2. quercetin-3’-glucuronide (Q-3-GlcA);  

3. 3’methylquercetin-3-glucuronide (IR-3-GlcA); 

4. quercetin-4’-glucuronide (Q-4’-GlCA);  
5. quercetin-3-glucuronide (Q-3-GlcA);  

6. quercetin (Q);  

7. quercetin-3-sulphate (Q-3-S); 

8. benzo(a)pyrene B(a)P 
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Norwich39 while quercetin 7-sulphate was provided by Dr 

Denis Barron, Nestle ResearchCentre, Lausanne, 

Switzerland. Purity of compounds was checked by HPLC 

with UV detection and was 98.5% for all.  

Benzo(a)pyrene standard solutions, all solvents and other 

reagents of analytical grade were obtained from Sigma–

Aldrich, Poole, UK. 

Metabolism studies 

Cells were treated, in triplicate, with solution of quercetin 

(60µM) as control, co-treated with quercetin (60µM) and 

benzo(a)pyrene (10 µM) and DMSO was used as 

analytical blank. After incubation, aliquots of 

extracellular culture samples at different times (T 0, 30 

min, 1h, 2h, 4h, 8h and 24h) were collected and treated 

with 20µl of Acetonitrile and Formic Acid, stored at -

20°C, centrifuged and transferred in vials for 

chromatographic analysis22. 

A stability study of quercetin in presence of BaP was also 

carried out in fresh and spent media (after 2h of 

incubation); media samples, collected at different times of 

incubation (T 0, 2h, 4h and 8h), were treated in the same 

conditions previously described. 

Preparation of CaCo-2/TC7 monolayers for transport 

studies 

A CaCo-2/TC7 monolayer was prepared by seeding cells 

(from 75 cm2 flasks) at 2-4 x 104 cells per cm2 on 12 –

well of 0.65 µm (0.33 cm2) Transwell polycarbonate 

filters (Corning Costar Corporation, Sigma- Aldrich, UK) 

and grown to confluence for 21 days. The media was 

changed every 2 days and cells were allowed to grow 

until 21 days post confluent. The evaluation of monolayer  

 
a 

 
b 

 
c 

Figure 2: Quercetin’s metabolites rate, in presence of benzo(a)pyrene (BaP cot), expressed as a) total glucuronides 

(TOT GlcA), b) total sulphates (TOT Sulphates) and c) total conjugates (TOT Conjugates).*P<0.05 
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integrity of the cells in the Transwells was determined by 

measuring transepithelial electrical resistance (TEER) 

using a Millicell-ERS volt ohmmeter (Millipore 

corporation, Billerica, Massachusetts, USA)40. TEER 

measurements of 6 and 12 well Transwells monolayers 

were routinely made prior to changing the cell culture 

media; additionally TEER measurements were taken also 

before and at the end of experiments to ensure adequate 

monolayer integrity. 

Transport studies  

From apical and basolateral compartments of CaCo-

2/TC7 monolayer, the media was removed by aspiration 

and 0.2 ml and 1 ml of samples were added in apical and 
basolateral side, respectively. To study quercetin 

transport in co-treatment with BaP, in Transwell system 

of 0.65 µm (0.33 cm2), cells were treated, in both apical 

and basolateral side, in triplicate, with solution of 

quercetin (60µM) used as control, co-treated with 

quercetin (60µM) and benzo(a)pyrene (10 µM), while 

DMSO was used like analytical blank. Aliquots collected 

at different time after incubation (T 0, 15min, 1h, 2h, 4h, 

8h and 24h) were treated with 20µl of Acetonitrile and 

Formic Acid and analyzed as previously described. 

Determination of apical to basolateral ratio from 

transport experiments  

To calculate the amount (µM) of flavonoids (aglycone 

and all metabolites) in the apical and basolateral side, the 

peak area from the HPLC chromatograms was 

considered. The apical to basolateral ratio is expressed by 

the equation below:  

ratio =    apical efflux 

 basolateral efflux 

This ratio is a measure of the favoured direction of efflux, 

where value of over 1.0 indicating an apically favoured 

efflux, values below 1.0 symbolising a basolaterally 

favoured efflux, and values of 1.0 symbolising an equal 

distribution of conjugate efflux. 

HPLC analysis 
The study of quercetin metabolism was realized in an 

Agilent 1100 HPLC (Agilent, Stockport, UK) comprising 

of two pump units, auto-sampler, mixer, and a diode-

array detector at λmax 270 and 370 nm, using a 

Phenomonex Luna C18 column (250 mm x 4.6 mm i.d.) 5 

μm equipped with guard column. Samples were eluted 

using like mobile phase MilliQ water (A) and Acetonitrile 

(B) with 0.1% TFA, at this elution gradient: 17% (B) 

from 0 to 2 min ; 25% B from 2 to 7 min; 35% B from 7 

to 15 min; 50% from 15 to 20 ; 100% B from 20 to 25 

min; 100% B until 30 min; 17% B from 30 to 35 min, 

followed until 50 min. Analysis was conducted at  

Table 1: Metabolic behaviour of quercetin (60 µM) in cotreatment with benzo(a)pyrene (10 µM). 

 Q-7-GlcA 
Q -3’-

GlcA 

IR Q-3-

GlcA 

Q-4’-

GlcA 
Q-3 -GlcA 

QUERCET

IN 
Q-3’- S 

T 0 conc µM 

QUE 

(control) 
n.d. n.d. n.d. n.d. n.d. 

60.635 ± 

11.72 
n.d. 

QUER (BaP 
ct) 

n.d. n.d. n.d. n.d. n.d. 
60.184 ± 
10.84 

n.d. 

T 1h conc µM 

QUE 

(control) 

0.806 ±0.45 
n.d. n.d. n.d. 

0.981 ± 

0.040 

45.58 ± 

7.24 

2.259 ± 

0.831 

QUER (BaP 

ct) 

0.939 ±0.26 
n.d. n.d. n.d. 

0.821 ± 

0.088 

40.894 ± 

8.67 

1.639 ± 

0.584 

T 2h conc µM 

QUE 

(control) 

4.413 ± 

0.50 

0.415 ± 

0.079 

0.253 ± 

0.027 

0.431 

±0.017 

3.221 ± 

0.583 

33.971 ± 

3.464 

4.063 ± 

0.556 

QUER (BaP 

ct) 

5.297 ± 

1.211 

0.670 

±0.194 

0.202 ± 

0.016 

0.280 ± 

0.045 

2.399 ± 

0.143 

30.711 

±6.424 

2.857 ± 

0.853** 

T 4h conc µM 

QUE 

(control) 

10.562± 

1.51 

1.107 ± 

0.24 

0.591 ± 

0.036 

1.316 ± 

0.322 

8.914 ± 

0.997 

15.851 ± 

2.682 

11.239 

±0.765 

QUER (BaP 

ct) 

12.084 

±2.185* 

1.068 ± 

0.113 

0.542 ± 

0.045 

1.187 ± 

0.074 

8.283 ±1.051 9.062 

±1.091** 

11.520 

±2.722 

T 8h conc µM 
QUE 

(control) 

16.558 

±4.438 

3.205 ± 

0.581 

1.499 

±0.349 

3.439 

±0.508 

19.001 

±4.793 

0.217 

±0.029 

15.528 

±1.318 

QUER (BaP 

ct) 

15.189 

±3.919 

2.490 

±0.373* 

1.738 

±0.137 

3.635 

±0.757 

15.309 

±3.139** 

0.186 

±0.041* 

18.116 

±1.645** 

T 24h conc µM 

QUE 

(control) 

17.945±0.9

91 

3.378 

±0.660 

2.112 

±0.437 

4.413 

±0.816 

21.089 

±1.244 

n.d 17.225±0.68

6 

QUER (BaP 

ct)  

18.749 

±2.055 

2.719 

±0.472 

2.107 

±0.088 

4.412 

±0.808 

19.938 

±3.260* 

n.d 18.543±2.69

3 

*P<0.05**P<0.01 
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temperature of 20 C°, at flow of 1 ml/min and injection 

volume was 50 µl. 

To validate the chromatographic method used, all specific 

parameters were assessed. The limit of detection (LOD) 

for quercetin and its metabolites was determined as 0.007 

µM. To check the linearity, standard solution of quercetin 

and its metabolites at different concentrations (40, 20, 10 

µg/ml) were analysed. Calibration curves for each 

compound were constructed using the linear least-squares 

regression procedure (n=4) of peak area versus standard 

concentration in µg/ml (R2=0.999). The accuracy and 

repeatability of the method was assessed by performing a 

spike-and-recovery test. Recovery was measured using 

fortified samples (n = 3 replicates) each at three levels of 

concentration, corresponding to 85 %, 100% and 110%, 

respectively, for each analyte. Spike recoveries were 
repeated three times for each concentrations and the 

results were expressed as average percentage of recovery. 

The specificity was confirmed by analysis of blank 

samples. 

To confirm quercetin metabolites detection by HPLC, 

further analysis were performed using LC with mass 

spectrometry in positive mode (Micromass Quattro II; 

Manchester, UK)22. Chromatographic runs were carried 

out under the same conditions previously described. The 

limit of detection in culture media samples was 

determined as 0.004 μM. 

Statistical analysis 

The results were reported as mean value ± S.D. from a 

minimum of three replicate measurements. When total 

conjugates, glucuronates (GlcA) and sulphats are 

reported, the data were obtained by summing all the 

values for the individual conjugates but did not include 

the free quercetin.  

Data were submitted to analysis of variance (ANOVA) 

and paired sample t-test to determine the significance of 

differences between groups. P values <0.01 and <0.05 

were accepted as statistically significant. 

 

RESULTS 
Metabolism studies 
The metabolic profile of quercetin and its main 

metabolites (quercetin-7- glucuronide, quercetin 3’- 

glucuronide, IR-quercetin 3- glucuronide, quercetin 3- 

glucuronide, quercetin 4’- glucuronide, quercetin 3- 

sulphate), identified and quantified in co-treatment with 

Benzo(a)pyrene through the chromatographic analysis, is 

reported in Figure 1. 

The concentrations of quercetin and its metabolites in 

cells co-treated with BaP at different times, in 

comparison to the control, are reported in Table 1. In  

 
a 

 
b 

Figure 3: Quercetin stability test in fresh (a) and spent (b) media in presence of B(a)P. 
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particular, from these data it’s possible to observe that 

quercetin decreases significantly at 4h (P<0.01), respect 

to control, until to be absent at 24h (considered the last 

step of metabolic process). All main metabolites of 

quercetin are present after 2h; their concentrations present 

same differences (P<0.05 and P<0.01) in presence of BaP 

during the intermediate time of analysis (4h and 8h), 

reacting at 24h values lower than control, except for Q-7-

GlcA and Q-3’-S. These results were expressed also in 

Figure 2 as sum of glucuronates metabolites (Tot GlcA), 

sulphate metabolites (Tot Sulphates) and total conjugates 

(Tot conjugates), except free quercetin.  In presence of 

BaP the production of glucuronates metabolites is similar 

to control until 4h but decreases significantly from 8 h to  

 
a 

 
b 

 
c 

Figure 4: Comparison between quercetin’s transport rate, in apical and basolateral side, in co-treatment with 

benzo(a)pyrene, expressed as total GlcA (a), total Sulphate (b), total Conjugates (c). *P<0.05 **P<0.01 
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24h, respect to control (Fig 2a), instead, the rate of 

sulphates metabolites is higher than control from 8h to  

24h (Fig 2b). Considering the total production of phase 2-

metabolites (Fig 2c), it’s possible to observe that in 

presence of BaP the total amount of conjugates is similar 

to control at 4h but decreases from 8 h until to the last 

metabolic step at 24h.  

In Figure 3 is reported the study of quercetin stability in 

presence of BaP, in fresh and spent media (after 2h of 

incubation). The results obtained showed a similar trend 

in both experimental conditions, with a gradual loss of 

quercetin from 1h to 8h in fresh media (Fig 3a), more 

evident at 4h and 8h in “spent” media (Fig. 3b), possible 

due to the slow auto-oxidation of quercetin in media. 

Transport studies 

Data related to the transport of quercetin and its 
metabolites in apical and basolateral side of cells, in 

presence of BaP, are reported in Table 2 and 3, 

respectively. In apical side, quercetin concentrations in 

cells co-treated with BaP decreased respect to control, 

except to 4h; the total glucuronates content is less than 

control, but the sulphates are increased for all time of 

analysis with a maximum value at t 2h, with statistically 

significant differences (Table 2). In basolateral side, the 

content of quercetin decreased significantly in cells co-

treated with BaP, in all time of analysis; the rate of 

glucuronidation and sulfation of quercetin is increased 

respect to control, reacting the maximum values at 2h 

(P<0.01), then both decreased significantly in the last 

metabolic steps (Table 3). From a comparative analysis of 

quercetin transport rate in presence of BaP in both 

cellular compartments (Fig.4) it’s possible to observe an 

increase of glucuronidation rate for each time of analysis 

but with higher concentrations basolateral than in apical 

side (Fig 4a). Instead, the sulphatation rate increased in 
both cellular side until to 2h, with higher concentrations  

in basolateral than apical sides, and then decreased (Fig 

4b).  Considering the total conjugates, it showed a similar  

Table 2: Transport rate (conc µM) of quercetin in apical side, in co-treatment with benzo(a)pyrene. 

 QUERCETIN TOT GlcA TOT Sulphate TOT Conjugates 

T 0 conc µM 

QUE  (control) 59.94± 9.324 - - - 

QUER (BaP ct) 59.79±8.187 - - - 

T 30 min conc µM 

QUE (control) 53.36±7.328 0.132±0.065 4.362±0.837 4.494±0921 
QUER (BaP ct) 52.499±5.492 - 6.242±1.328 6.242±1.538 

T 1 h conc µM 

QUE (control) 49.06±5.033 0.788±0.033 6.839±1.243 8.331±1.738 

QUER (BaP ct) 49.064±7.257 0.355±0.048 6.839±1.025 7.529±0.937 

T 2h conc µM 

QUE (control) 22.67±3.176 1.823±0.656 5.332±0.963 7.727±1.533 

QUER (BaP ct) 17.473±4.226* 1.528±0.092 20.215±1.985** 22.242±4.281** 

T 4h conc µM 

QUE (control) 4.477±0.983 3.044±0.927 7.009±1.052 10.481±1.772 

QUER (BaP ct) 7.174±2.117 2.758±0.671 9.307±1.143 12.281±2.004 

T 8h conc µM 

QUE (control) 0.425±0.084 2.328±0.821 6.631±0.972 10.349±1.637 

QUER (BaP ct) 0.184±0.028 2.735±0.573 7.800±1.297 11.376±2.148 

         *P<0.05   **P<0.01 

 

 

Figure 5: Quercetin transport rate, in co-treatment with benzo(a)pyrene, expressed as Apical/Basolateral ratio of total 

conjugates.*P<0.05 
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behaviour in both cellular side: metabolites reacted the 

highest value at 2h (Fig 4c), considered the maximum 

metabolic step to possible effects of BaP on phase-2 

enzyme, and then decreased slowly until to 8h.  

The effects of this co-treatment with BaP were evaluated 

on the AP:BL efflux ratio, using only quercetin 

conjugates for the calculation (Fig 5). Quercetin transport 

rate in presence of BaP was similar to control until 1h and 

higher from 2h until to 8h, with differences statistically 

significant (P<0.05). This ratio AP/BL was <1 in all time, 
showing a basolaterally favoured efflux. 

 

DISCUSSION 
To assess the fate of food contaminants and 

phytochemical compounds when they reach the intestinal 

epithelial cells is very important because their interaction 

at level of this first barrier either allows or prevents their 

entry in the gut34 and, consequently, could influence their 

toxic and biological effects. In literature several authors 

report the impact of quercetin and other polyphenols on 

BaP41, its toxic activities42-44, metabolism and enzymatic  

induction45-46. This study, on the contrary, describing the 

in vitro effects of BaP on phase-2 metabolism and 

transport rate of quercetin confirms that the co-treatment 

with BaP is able to influence quercetin metabolism, 

inducing the activity of phase-2 enzyme. Particularly an 

evident reduction of glucuronidation of quercetin (by 
UDP-glucuronosyl transferases) has been observed in the 

last time of analysis (from 8h to 24h), while the 

sulphatation is increased (by sulfotransferases) in the last 

metabolic rates, in comparison with control.  

To better understand data obtained, further investigations 

were carried out to evaluate a possible influence of BaP 

on quercetin stability but no significant effects were 

observed in all different experimental conditions of 

analysis. In fact, the stability of quercetin, analyzed in 

fresh and spent media, appeared moderately reduced in 

presence of BaP, respect to control, for all times of 

analysis. However, in both experimental conditions have 

to be considered also the slow process of auto-oxidation 

of quercetin in media. As largely documented by other 

authors47, in cell culture the flavonoids decrease 

intracellular production of reactive oxygen species but, at 

the same time, may produce them in the extracellular 

medium, leading to disorder of redox homeostasis, 

cellular signaling, transcriptional factors and gene 

expression48-49,47. 

The transport represents a critical step able to influence 
the adsorption and metabolism of antioxidants as 

quercetin and, clearly, the carcinogen BaP is a key factor 

in the whole process. In fact, the studies carried out in 

apical and basolateral side of Caco-2 cells, during co-

treatment with BaP, showed a clear influence of this toxic 

compound on transport rate of quercetin and its 

metabolites. The effect of BaP on transfer rate of 

quercetin metabolites in both cellular side, with a ratio 

AP/BL <1 in all time, demonstrated a basolaterally 

favoured efflux and this is of interest because could 

favourer also on absorption of this flavonoid. 

The increased rate of both glucuronidation and sulfation 

in apical and basolateral side in presence of BaP could be 

due to a possible enhancement of proteins transfer or to 

induction of multi-drug resistance protein transporters50-

51, responsible of absorption or excretion of quercetin and 

its metabolites. 
In conclusion, this in vitro study showed for the first time 

that carcinogen B(a)P induced significant changes in 

phase-2 metabolism and transport rate of the flavonoid 

quercetin by Caco-2 cells, model of human enterocytes. 

The influence of BaP on quercetin metabolism and 

transport rate puts in evidence a possible effect of this 

toxic compounds as enzymatic inductor of phase-2 

enzyme (UDP-GT and ST), probably for their 

enhancement of enzymatic activities, with significant 

effects on quercetin bioavailability. However, further 

investigations are needed to better understand this effects 

Table 3: Quercetin transport rate (conc µM) in basolateral side, in co-treatment with benzo(a)pyrene. 

 QUERCETIN TOT GlcA TOT Sulphate TOT Conjugates 

T 0 conc µM 

QUE (control) 59.99±8.372 - - - 

QUER (BaP ct) 59.92±9.817 - - - 

T 30 min conc µM 

QUE (control) 58.422±7.281 0.238±0.032 9.170±1.734 9.409±1.492 

QUER (BaP ct) 53.561±8.841 - 11.109±2.341 11.109±2.107 

T 1 h conc µM 

QUE (control) 51.963±5.385 0.477±0.054 11.593±1.586 12.363±2.218 

QUER (BaP ct) 45.416±8.431 0.973±0.061 12.922±2.073 14.186±2.719 

T 2h conc µM 

QUE (control) 31.793±4.387 1.397±0.657 13.732±2.528 15.469±2.781 

QUER (BaP ct) 24.012±5.103** 4.997±1.052** 22.542±3.548** 28.053±3.006** 

T 4h conc µM 

QUE (control) 18.527±2.527 5.858±1.341 18.863±4.381 25.327±3.718 

QUER (BaP ct) 8.951**±1.928 4.267±0.548 14.229±3.205 18.774±2.711 

T 8h conc µM 

QUE (control) 2.574±0.822 8.123±1.945 17.237±2.337 25.706±3.106 

QUER (BaP ct) 0.255±0.051** 4.699±0.856* 12.798*±1.045 17.713±1.347 

*P<0.05**P<0.01 
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and clarify the real role of BaP on kinetic behaviour of 

quercetin and, consequently on its biological effects for 

human health. 
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