INTRODUCTION

Tramadol, a broadly in recent years, is an effective analgesic agent for the treatment of moderate to acute pain. Its metabolites are excreted by the kidney which may cause nephrotoxicity. Moringa oleifera leaves are commonly used to provide herbal and plant-derived medicinal products especially in developing nations. The present study was carried out to determine the biochemical and histopathological changes in the kidney of tramadol-treated albino mice and to evaluate the possible protective role of Moringa oleifera leaves against tramadol-induced nephrotoxicity. Twenty adult albino mice were divided into four groups. Control group (group i) received daily intraperitoneal injection of normal saline only, group ii received oral dose of Moringa oleifera leaves extract (20 mg/kg/bw) for three weeks, group iii received daily intraperitoneal dose of tramadol (0.3 mg/kg/bw) for the same period, group iv, received daily oral dose of Moringa oleifera leaves extract, (20 mg/kg/bw) three hours before injecting intraperitoneal dose of tramadol (0.3 mg/kg/bw), for the same period. Blood samples were withdrawn at the end of the experiment for kidney function tests and specimens from the kidney were processed for histological study. No significant differences in the mean values of the kidney function tests were noticed between Moringa oleifera group and control group. However, there was highly significant increase in the mean values of serum, urea and creatinine in tramadol-treated group as compared to the control group. Although tramadol + Moringa oleifera group revealed significant difference in the mean values of urea and creatinine when compared with tramadol-treated group. So, Moringa oleifera leaves extract have been shown to attenuate the renal dysfunction, improve the renal architecture, with nearly normalization of serum urea and creatinine levels which indicate improvement of renal function. In conclusion, in the light of biochemical results and histological findings, co-administration of Moringa oleifera leaves lessen the negative effects of tramadol-induced nephrotoxicity; possibly by its antioxidant action. Further investigation of these promising protective effects of Moringa oleifera leaves against tramadol-induced renal injury may have considerable impact on developing an adjunct therapy aiming to improve the therapeutic index of some nephrotoxic drugs.

Keywords: Nephrotoxicity- Kidney- Moringa oleifera leaves- Histopathology.
pyridoxine, amino acids, minerals, various phenolic, with a known powerful antioxidant property. But, the anti-toxic nature of Moringa oleifera leaves against tramadol induced liver and kidney injury in mice has not yet been demonstrated. All parts of this plant are applied in traditional medicine for the treatment of human diseases, whereby the leaves are rich in protein, carotenoids, ascorbic acid and iron. The biological activities of Moringa oleifera, (in vitro) is hepatoprotective, hypcholesterolemia, antifungal, antioxidant, and anti-tumor have been documented. Its leaves are also used as nutritional supplement and growth promoters due to the significant presence of protein, Se, P, Ca, β-carotene and α-tocopherol. The protective effects of Moringa oleifera leaves in kidney against gentamicin-induced nephrotoxicity in experimental animals have been shown clearly the protective Moringa oleifera leaves against the nephrotoxicity.

Aim of the work

Recently, an increasingly dangerous effects of tramadol abuse has been massively demonstrated in a worldwide. Therefore, the aim of the current study was designed to examine the biochemical and histopathological effects of tramadol on the kidney and the possible beneficial effect of Moringa oleifera leaves extract on tramadol-induced renal functional and structural abnormalities via biochemical and histopathological analysis.

MATERIALS AND METHODS

Experimental animals

Twenty adult albino mice (Mus musculus) approximately 4-5 months old and each weight from 40-60 g were obtained from the animal house of faculty of medicine, King Abdel-Aziz University, Jeddah were used in the present investigation. Animals were housed in specially designed cages and were kept in the laboratory under the same standard conditions for at least one week for acclimatization before experimentation. The animals were provided with free access to pellets and allowed to drink tap water ad libitum throughout the duration of the experiment.

Dose and treatment

Only the therapeutic dose of tramadol was used in the present study, according to the manufacture. The therapeutic dose of tramadol was estimated to be 40 mg/kg/day. Tramadol were diluted with saline (0.9% Na Cl) to obtain the concentration used. Experimental animals received a single daily intraperitoneal injection of tramadol (40 mg/kg/day) for one week, two weeks and three weeks.

Plant materials

Samples of Moringa oleifera leaves were obtained from Egyptian Society of Moringa– National Research Center.

Preparation of extract

The leaves of the plant were cleaned thoroughly. They were then dried in room temperature & crushed into coarse powder. About 20 g of powder was taken and soaked separately in 100 ml of water and chloroform by keeping it in a Shaker for 3 days. It was filtered through cheese cloth and reduced to 10% of its original volume (organic solvent). Then, using a rotary evaporator, the filtrate was concentrated in vacuum, while aqueous extract was dried using water bath. The extract was dissolved in normal saline and adjusted according the required dose and administered with intragastrical tube according to the animal’s body weight.

Animal groups

Animals were divided into four (4) groups, with five animals in each group, as follows:

- **Group i**: Five mice used as control group, received intraperitoneal injecting of normal saline only for three weeks.
- **Group ii**: Five mice, received daily oral dose of Moringa oleifera leaves extract, (20 mg/kg/bw) for three weeks.
- **Group iii**: Five mice, received daily intraperitoneal dose of tramadol (0.3 mg/kg/bw) for three weeks.
- **Group iv**: Five mice, received daily oral dose of Moringa oleifera leaves extract, (20 mg/kg/bw) three hours before injecting intraperitoneal dose of tramadol (0.3 mg/kg/bw), for three weeks.

Biochemical studies

At the end of the experiment, animals were fasten for 12 hours. then anaesthetized with ether and blood samples (2ml) were withdrawn by cardiac puncture.

Statistical analysis

The data were expressed as means ±SD from 5 animals per group. The differences between the groups were compared for statistical significance by using the student ‘t’ test. p < 0.05 was taken as significant.

Histopathological preparation

The kidneys of each rat were quickly dissected out carefully, and cut to small pieces and then fixed in10% neutral buffered formalin fixative fluid. Following fixation, specimens were dehydrated, embedded then sectioned with thickness of 5 microns and then mounted on the clean slides without using any adhesives medium. For histopathological examination sections were stained with Ehrlich Hematoxylin and Eosin. The cytoplasm appeared pink and nuclei acquire a blue color.

RESULTS

Biochemical results

Statistical comparisons regard kidney function tests between control groups and Moringa oleifera, tramadol, and tramadol + Moringa oleifera groups using ANOVA test were done (Table 1). No significant differences in the mean values of the kidney function tests were noticed between Moringa oleifera group and control group. However, there was a highly significant increase in the mean values of urea and creatinine in tramadol-treated group as compared to the control group (p < 0.001). Although tramadol + Moringa oleifera group revealed significant difference in the mean values of urea and creatinine when compared with tramadol-treated group (p < 0.001).

Histopathological results

The histological examinations of the kidney of control group showed normal glomeruli, containing a tuft of glomerular capillaries surrounded by Bowman’s capsule which are separated by narrow Bowman’s space proximal and distal convoluted tubules were seen lined with
cuboidal epithelium with eosinophilic cytoplasm and central rounded nuclei (Figure 1). Histological sections of the kidney of mice treated with extract of Moringa oleifera leaves (20 mg/kg) for three weeks did not differ from the control group (normal histoarchitecture) (Figure 2). While histological sections of treated mice with tramadol alone for three weeks showed atrophied glomerulus with collapsed tuft, wide Bowman’s space, degenerated tubules with widening of its lumen and cellular infiltration. Hemorrhage and mononuclear cellular infiltration were also seen in the mesangium and convoluted tubes (Figures 3&4) Co-administration of Moringa oleifera leaves extract along with tramadol, revealed partial improvement with structure of the kidney nearly similar to control group. However, there were slightly wide Bowman’s space, some vacuolated tubular cells and mild congestion of peritubular capillaries (Figure.5).

DISCUSSION

Tramadol is available worldwide as a synthetic centrally acting analgesic for treatment of moderate to severe, acuter chronic pain. Tramadol hydrochloride is one of the synthetic opiate; widely used opioid in recent years as an effective analgesic agent for the treatment of acute or chronic pain. It is metabolized in the liver and excreted by the kidneys, it may cause hepatotoxicity and nephrotoxicity during its metabolism. The central role of liver and kidney in detoxification and drug metabolism increases the risks of toxic injury. So, the role of the liver and the kidneys in tramadol metabolism and excretion predisposes them to toxic injury. Tramadol and its metabolites are excreted via kidneys, consequently the kidney is considered the primary target organ for tramadol toxicity.

The results of our study revealed that administration of tramadol alone produced renal damage as evidenced from the elevated levels of serum urea and creatinine. Our results are in good agreement with those previously reported. As, laboratory evaluation of serum blood creatinine is considered "standard fare" in the determination of renal functions. So, elevation of urea and creatinine level in these run is taken as the index of nephrotoxicity.

Metabolites of tramadol may have a higher activity and/ or a greater toxicity than the original drug. These metabolites, excreted via kidneys, may also cause a cellular damage and, thus, a kidney dysfunction. The liver and kidney are responsible for the tramadol metabolism and excretion and the high risk of hepatotoxicity and nephrotoxicity. Thirty percent of the drug is excreted through the kidneys in an unchanged manner.

The result of the present work is in accordance with Attic et al., who reported that the increase in BUN and creatinine levels in rats with long-term tramadol receiving; others studies reached similar results. So, the significant increase detected in our study in serum urea and creatinine, as compared to the control group is considered as a sign of impairment of the renal functions in tramadol-treated mice. Similar assumption was reached by El-Gaafarawi. Our biochemical results supported the previous theory as assessment of oxidative stress markers revealed a significant increase in the renal malondialdehyde level and a decrease in the glutathione peroxidase level in tramadol-treated group when compared to the control.

The histopathological results in this study were confirmed the toxic effects of tramadol on the kidney after administration of tramadol for successive twenty-one days, in the form of degenerated renal tubules to obstructed lumen and atrophied glomerulus with collapsed tuft and wide Bowman’s space. Our results are in agreement with the findings of Atici, Sebem et al., who observed that the renal tubular vacuolization, mononuclear cell infiltration, focal necrosis and hemorrhage as well as an increase in creatinine levels in rats receiving opioids. These observations can be considered as evidence of renal damage. Similar results were reported by Elkhateeb, et al., who found atrophied glomerulus with collapsed tuft, wide Bowman’s space, degenerated tubules, cellular infiltration and hemorrhage in tramadol treated group. The histopathological evidence of renal damage that observed after administration of tramadol 3 weeks were in agreement with Nehru and Anand, who reported that the reactive oxygen species generation and lipid peroxidation are responsible for tramadol-induced nephrotoxicity. The previous theory coincides with the results of Elkhateeb et al., who revealed that the increase in malondialdehyde level and a decrease glutathione peroxidase level in kidneys of rats receiving tramadol.

Moringa oleifera leaves have gained popularity especially in recent times due to various nutritional and health benefits of the plant; though it is important to note that most investigations on this plant are basic and the reports would require proper trials to evaluate the exact benefits to human health. Paliwal, R. et al., who reported that the anti-nephrotoxic effect of Moringa oleifera leaves; Ezejindu, DN et al., who reported that the Moringa oleifera leaves extract would not produce any deleterious effects on the kidney of experimental animals even in cases of chronic administration. Awodele, et al., reported that the Moringa oleifera leaves consumption to be relatively safe at sub-lethal doses especially with respect to its effects on the kidney and liver tissues Oyagbeni, et al., however suggested that the chronic use could predispose animals to hepatic and kidney damage. The current finding, however, shows that at moderate doses, Moringa oleifera leaves extract ingestion is safe and has protective role for the renal tissues. In the present work, co-administration of Moringa oleifera leaves extract along with tramadol revealed partial improvement with structure of the kidney nearly similar to control group. However, there were slightly wide Bowman’s space, some vacuolated tubular cells and mild congestion of peritubular capillaries. Concomitant use of Moringa oleifera leaves extract along with tramadol in the current study, produced partial improvement in the nephrotoxic effects which is in
Table 1: Comparison of the mean values of total kidney function tests [serum urea & creatinine] of control, Moringa oleifera, tramadol, and tramadol + Moringa oleifera groups using ANOVA test.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>control group</th>
<th>Moringa oleifera group</th>
<th>Tramadol group</th>
<th>Tramadol + Moringa oleifera groups</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea (mg/dl)</td>
<td>41.85 ± 1.7</td>
<td>39.05 ± 0.95</td>
<td>73.56 ± 5.26 a</td>
<td>51.41 ± 8.57 b</td>
<td>0.001*</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.87 ± 0.03 b</td>
<td>0.79 ± 0.02</td>
<td>1.73 ± 0.12 a</td>
<td>1.42 ± 0.13 a</td>
<td>0.001*</td>
</tr>
</tbody>
</table>

a Significant difference (p < 0.05) when compared with the control group.
b Significant difference (p < 0.05) when compared with tramadol-treated group.
** Highly significant (P < 0.001).

accordance with Fakurazi, S. et al., who assumed that the Moringa oleifera leaves extract has together with the antioxidant effect evidenced by significant reduction of malondialdehyde content levels.

Our results also showed that treatment with Moringa oleifera leaves extract reduced the levels of raised serum urea and creatinine and restored the renal function; suggesting that the contents of Moringa oleifera leaves not only protected the integrity of kidney but, at the same time,
increased its regenerative and reparative capacity. Alterations or normalization in biochemical parameters were correlated with renal histological results. On histological examinations of the kidney of intoxicated mice groups which received Moringa oleifera leaves showed nearly complete recovery. The above changes can be considered as an expression of the functional improvement of renal tubules, which may be caused by an accelerated regeneration of tubular cells. So, treatment with Moringa oleifera significantly reversed the degenerated changes, hence it may be possible that the mechanism of nephroprotection by Moringa oleifera is due to its antioxidant effect. This suggestion was strengthened by recent findings that Moringa oleifera leaves possess potent antioxidant properties. These properties may be mediated through direct trapping of the free radicals and also through metal chelation. Also, the protective effect of Moringa oleifera leaves extract on the kidney observed in the present work could be explained by the results of the work of Fakurazi et al., who reported that the plant extract have some roles in preserving structural integrity of cell membrane, they also suggested that protective effects afforded by Moringa oleifera against chemical induced hepatotoxicity and nephrotoxicity is due to its ability to induce phase II detoxification pathway via promoting reduced glutathione conjugation with toxic metabolites generated from CYP450 pathway. The further research should investigate the mechanism of protective activities of Moringa oleifera leaves and the role of bioactive components of this plant responsible for this action. As assumed by Sokunbi, OA, et al., who reported that the protective effect of Moringa oleifera extract, could be attributed to the ability to antagonize the enhanced lipid peroxidation, and in turn stabilize the integrity of the cellular membranes. In view of the above findings, it is suggested that the phytochemical constituents in Moringa oleifera could contribute to its antioxidant activity and, thus, nephroprotection.

In conclusion, our results indicated that the use of Moringa oleifera leaves extract alleviated the toxic effects of tramadol on the kidney including the histopathological and biochemical changes. The protective effect of Moringa oleifera leaves could be due to its antioxidant potential by scavenging the free radicals. So, patients using tramadol for long times should be checked regularly for their kidney functions. Also, our study revealed that administration of Moringa oleifera leaves extract during tramadol treatment would be beneficial. Medicinal preparations that combine tramadol Moringa oleifera leaves extract might decrease the toxic tramadol effects.

REFERENCES

12. Yousef, M.I., et al., Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver

