Ethnobotanical, Pharmacological, Antimicrobial Potential and Phytochemistry of *Parthenium hysterophorus* Linn.: An Update

Ajeet Singh*, Navneet

Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, Uttarakhand, India

ABSTRACT

Parthenium hysterophorus (Linn.) is a violent everywhere annual, herbivorous weed. It is commonly known as congress grass or gajar ghas. *P. hysterophorus* shown several hazardous effects on human health and livestock. It reduces the crop production due to its allelopathic effect. In spite of these drawbacks *P. hysterophorus* is traditionally recognized for its use in the treatment of wounds, fever, ulcerated sores and malaria. It is a weed of global importance. Pharmacological investigation revealed that it possess several therapeutic applications such as antibacterial, antifungal, anti-feedant, anti-inflammatory, antinociceptive, nematicidal, hypoglycaemic, pesticidal, antiameobic, antioxidant and antiparasitic activities. The aim of this review is to summarise the pharmacological benefits of *P. hysterophorus*.

Keywords: *Parthenium hysterophorus* Linn., traditional medicine, antimicrobial potential phytochemistry and pharmacology.

INTRODUCTION

Parthenium hysterophorus Linn. belongs to family Asteraceae. It is an obnoxious invasive weed. It is a biological pollutant because of its adverse effects on human health. Owing to its invasive nature, the weed is included in the Global Invasive Species database of IUCN. The weed spreads very rapidly over large areas and quickly forms its own monoculture. It occurs widely in different habitats varying from hot and arid, semi-arid to humid and from low- to middle- to high-altitude regions. *P. hysterophorus* contains a large number of important bioactive compounds, mainly sesquiterpene lactones, flavonoid glycosides and pinenes. It has multiple pharmacological properties, such as anticancer, anti-inflammatory, cardiotonic, antispasmodic and as an enema for worms.

The chemical constituents of the weed have also been used as an insecticide and for curing skin diseases such as psoriasis. Furthermore, the properties of the weed in stimulating menstrual function and reducing fever and neuralgic pain have also been described. Zutshi et al., (1975) explored the antibacterial activity of essential oils from *P. hysterophorus* against *E. coli, V. cholerae* and *Klebsiella aerogenes*. Its antiameobic activity against axenic and polyxenic cultures of *E. histolytica* was reported. Its anti-malarial activity has been found effective against *Plasmodium falciparum*, and it also possesses herbicidal and pesticidal properties. Aqueous extracts of pollen grains of *P. hysterophorus* exhibited antifungal activity by inhibiting sporangial germination and zoospore motility in *Sclerospora graminicola* infesting *Pennisetum typhoides*. Taxonomy

Author for Correspondence: ajeetchoudharygkv@gmail.com
trichomes observed on the upper and lower leaf surfaces. Trichomes are considered as stores for toxic chemicals found in the weed such as parthenin. The flowers are creamy-whitish and are arranged in capitula. Pollen grains are produced in clusters and are anemophilous11,12.

Traditional uses

P. hysterophorus is used in the treatment of ulcerated sores, wounds, fever, migraine headaches, rheumatoid arthritis, stomach aches, toothaches, insect bites, infertility, and problems with menstruation, labour during childbirth anaemia and heart troubles. A decoction of the root finds use in treatment of dysentery and the lower concentrations of extracts might find use as antifungal agent. It is applied externally on skin disorders and decoction of the plant is often taken internally as a remedy for a wide variety of ailments. It is also reported as promising remedy against hepatic amoebiasis1. Decoction prepared from its roots has been used by American and Indians in traditional medicine to treat amoebotic dysentery13. Ramos et al. (2001) reported its applications in treating neuropathic disorders, fever, urinary infections, dysentery and malaria and as emmenagogue14.

Pharmacological uses

Antibacterial activity

Different extracts of *P. hysterophorus* were reported antibacterial potential Dichloromethane extract of leaves was found as the most effective against *E. coli* and methanolic extract of leaves was found highest for *S. aureus*15. All types of organic extracts and aqueous extract of inflorescence were highly effective against *P. aeruginosa* and *C. freundii*16. Antibacterial efficacy of *P. hysterophorus* has also been reported by several researchers against *E. coli*17, *B. subtilis*, Enterooccus spp., *S. aureus*18, *S. typhimurium*, *E. epidermidis*, *V. cholerae*, *S. flexineri*19, *P. aeruginosa*, *Microweuse luteus*20, *B. cereus*21, *K. pneumoniae*, *E. aerogenes*, *Xanthomonas vesicatoria* and *Ralstonia solanacearum*22.

Antifungal activity

Antifungal potential of different extracts of *P. hysterophorus* against human pathogenic fungi were reported by Rai and Upadhyay (1990)23 and Rai (1993, 1994, 1995)24. The dermatophytes and other fungal pathogens have been found to be sensitive to sesquiterpene lactones which are present as active agent in *P. hysterophorus*25. *Fusarium solani* was significantly inhibited by aqueous, methanol and n-hexane extracts26. Aqueous extract of inflorescence of *P. hysterophorus* was found effective at higher concentrations of 1000 μg/ml and 500μg/ml against *Penicillium chrysogenum*, *Microsporum gypseum* and *Rhizopus stolonifer* but different organic extracts showed no activity27. Aqueous leaves extract of *P. hysterophorus* also showed antifungal activity against *Alternaria alternata*27. Antifungal property of *P. hysterophorus* has been reported by several researchers and plant and human pathogenic fungi viz., *F. solani*28,29, *A. alternata*30,31, C. albicans32, F. oxysporium, A. niger33,34, Candida kefyr35, A. flavus36, Drechslera tetramera, *Phoma glomerata*37, A. fumigatus38, Drechslera hawaiensis, A. alternata keissl, F. moniliforme39, A. brassicicae, A. brassicicola39, S. cerevisiae32, Bipolaris oryzae40.

Antifeedant activity

Parthenium has been shown to act as a feeding deterrent to the adult of *Dysdercus koenigii*, *Tricholium castaneum*, *Phititorinae operculata*, *Callosobruchus chinensis* L. and sixth instar larvae of *Spodoptera litura*41-42. Anti-inflammatory activity

Oral administration 10, 20, 40 mg/kg of body weight of *P. hysterophorus* extract led to significant antiinflammatory effects against carrageenan induced paw edema in rats. 200mg/kg of body weight of fresh leaves ethanolic extract exhibited high degree anti-inflammatory in carrageenan induced paw edema rats. 1, 2 mg/kg of body weight parthenolide administration also produced anti-inflammatory effects43-45.

Antinociceptive activity

Oral administration 10, 20, 40 mg/kg of body weight of *P. hysterophorus* extract led to significant antinociceptive effects against acetic acid induced writhing in mice46.

Nematicidal potential

P. hysterophorus extract reported nematicidal activity against *Meloidogyne incognita*, *Helicotyledon dihyserla*. Crushed leaves admixed into the soil are used to reduced root galling in papaya caused by *M. incognita*47-48. Hypoglycemic activity

Aqueous extract of *P. hysterophorus* flower (100 mg/kg of body weight) shown significantly decreased the serum glucose level in normal and alloxan induced diabetic rats. Slightly decreased blood glucose level was found in rats after oral administration of fresh leaves extract of *P. hysterophorus*49-50.

Thrombolytic activity

Crude methanol extract of *P. hysterophorus* has been shown thrombolytic effect comparable to standard thrombolytic agent, streptokinase. Parthenolide and some other metabolites were determined as the inhibitor of human blood platelet function49,50.

Pesticidal activity

Antifeedent bioassay revealed that lactone was found to be about 2.25 times more toxic than parthenin against sixth-instar larvae of *Spodoptera litura* and pyrazoline adduct was found to be the most effective as an insecticide against the adults of store grain pest *Callosobruchus maculatus*. Petroleum ether extracts of leaves, stem and inflorescence of *P. hysterophorus* at 500, 1000, 2000 and 5000 ppm concentrations significantly decreased the life span and progeny production of mustard aphid, *Lipaphis erysimi*51.

Herbicidal activity

Pure parthenin as well as extract of different parts of *P. hysterophorus* shown phytotoxic effects on many aquatic as well as terrestrial weeds52-54. The sesquiterpene lactone parthenin has received most attention regarding allelopathy or potential herbicidal properties of *P. hysterophorus*55.

Antiamoebic activity

Antiamoebic activity of parthenin has been evaluated *in vitro* against axenic and polyxenic cultures of *Entamoeba histolytica*. Parthenin has *in vitro* activity comparable to that of metronidazol. *P. hysterophorus* demonstrated...
antiamoebic activity comparable to the standard drug metronidazole against axenic and polygenic cultures of *E. histolytica*\(^5,6^6\).

Anti-malarial activity

Parthenin and some of its derivatives were evaluated for antimalarial activity against a multi drug resistant strain of *Plasmodium falciparum*. Parthenin and related compounds have significant antimalarial action. Hydroalcoholic extract of *P. hysterophorus* was *in vitro* effective against *P. falciparum*\(^57^-^58\).

Insecticidal activity

Parthenin is known to show activity against termites, cockroaches as well as migratory grasshoppers, *Melanoplus sanguinipes*\(^59^-^61\). Whole plant extract of *P. hysterophorus* showed insect growth regulatory activity against the *Dysdercus angulatus*\(^62\); fifth instar larvae of *S. litura*\(^63^-^64\) and toxic effect on *Crocidoloma binolalis* (cabbage leaf webber), and *Callosobruchus maculatus* (pulse beetle) infesting cowpea seeds\(^65\) and mites\(^66\). The natural occurring resin material of *Parthenium* spp. has been demonstrated to protect wood against termite, molluscan borer and fungal attacks\(^57\). Petroleum ether extract of leaves, stem and inflorescence of *P. hysterophorus* shown toxic effect on mean life span and progeny production of adults of the mustard aphid, *Lipaphis erysimi*\(^67\).

Trypanocidal activity or antiparasitic activity

50% crude ethanolic extract of *P. hysterophorus* shown *in vitro* activities against *Trypanosoma evansi*. The extract exerts antityranosomal effect at intraperitoneal doses of 100 and 300 mg/kg body weight when used for treatment of infected rats\(^58\).

Wound healing activity

Externally leaf paste application of *P. hysterophorus* showed wound healing activity\(^69\).

Antioxidant activity

DPPH (2, 2-diphenyl-1- picrylhydrazyl radical) scavenging assay revealed that methanolic and ethanolic extract of *P. hysterophorus* showed antioxidant activity 78.25561% and 66.28858% respectively. The acetone extract was found to have higher anti-oxidant activity than methanol and chloroform extracts. 200mg/kg of body weight of fresh leaves ethanolic extract has been showed significant antioxidant activity in rats\(^63^-^70\).

Antiviral activity

Parthenium extract exhibits significant antiviral action against potato virus Y. This virus extensively damages the chili crops. Parthenin might find use as an effective agent against potato virus Y\(^57\).

Cytotoxic activity

Pseudoguaianolides and their analogues possess cytotoxic effect. Parthenin exhibits cytotoxicity with chromosomal aberrations in peripheral blood lymphocytes when administered to mice. A single intra-peritoneal dose of 4-31 mg/kg body weight of animal of parthenin increases the frequency of micro nucleated reticulocytes in mice\(^70^-^72\).

Anticancer activity

The methanolic extract of *P. hysterophorus* has been found to have anti-tumour effect in host mice bearing transplantable lymphocytic leukemia. The active compound leads to slow development of tumour and increases the survival of mice bearing lymphocytic leukemia\(^73\). Studies conducted *in vitro* cototoxicity against human cancer cells have shown that *P. hysterophorus* possess anti-cancerous properties\(^74^-^75\).

Analgesic activity

Methanolic extract of *P. hysterophorus* at dose 2.5 and 5 mg/kg of body weight caused significant analgesic activity similar to pathidine in Swiss albino mice may be due to the action on central nervous system\(^76\).

Anti- rheumatoid arthritis activity

P. hysterophorus was reported to inhibit granule secretion in blood neutrophils, which is related with the etiology of rheumatoid arthritis\(^77\).

Mutagenic activity

Column chromatography fraction of *P. hysterophorus* crude extract was mutagenic in strain TA 98 of *Salmonella*. Next investigation showed that 0.19 to 1.22μmole of parthenin per plate was weakly mutagenic in *S. typhimurium* TA 102 strain but 7.62μmole per plate or higher was toxic and 10-60μM during 20h induced chromosomal aberrations in mouse blood lymphocytes\(^74^-^72\).

Phytochemistry

More than 45 sesquiterpene lactones were identified from leaves and flower among them the major is sesquiterpene lactone parthenolide, which is up to 0.9% of total constituents. Twenty-three compounds, representing 90.1% or more of the volatile oils, have been identified from *P. hysterophorus*\(^70\).

Terpenoids

Sesquiterpene lactones: germacranolides (including parthenolide, artemorin and chrysanthemonin) guianolides (including chrysarremia A, parholide and chrysanthemonolide) and eudesmanolides (including santamarin, reynosin and magnolilactone). parthenin, cornopolin, artecanin, balchanin, costunolide, epoxypartetherin\(^80^-^81\).

Volatile oils

Various monoterpene and sesquiterpene components (e.g. camphor (56.9%), camphene (12.7%), p-cymene (5.2%), bornyl acetate (4.6%), tricyclic, α-thujene, α-pinene, β-pinene, α-phellandrene, α-terpinene, γ- terpinene, chrysanthene, pinocarvone, borneol, terpinen-4-ol, ρ-cymen-8-ol, α-terpinol, myrtenal, carvacrol, eugenol, trans-myrtanol acetate, isobornyl 2-methyl butanoate, caryophyllene oxide, germacrene, farnesene and their esters)\(^80^-^83\).

Amino acids

Rich in Glycine and proline and moderate amount with alanine and lysine\(^84\).

Amino sugars

N-acetylglactosamine and N-acetylglucosamine\(^84\).

Phenolic derivatives

Caffeic, vanillic, ferulic, chlorogenic and asinic acids\(^81\).

Flavonoids

Luteolin, apigenin, 6-hydroxykaempferol 3,6-dimethyl ether, 6-hydroxykaempferol 3,6,4′-trimethyl ether (tanetin), quercetagetin 3,6- dimethyl ether, quercetagetin 3,6,3′-trimethyl ether (accompanied by isomeric 3,6,4′-
CONCLUSION

P. hysterophorus can be listed among various medicinal plants with potent pharmacological and ethno medicinal properties. *P. hysterophorus* shows several hazardous effects on human health and livestock. It reduces the crop production due to its allelopathic effect. In spite of these drawbacks, *P. hysterophorus* is traditionally recognized for its use in the treatment of wounds, fever, ulcerated sores and malaria. *Parthenium* is a weed of global importance. Pharmacological investigation revealed that it possesses several therapeutic applications such as antibacterial, antifungal, anti-feedant, anti-inflammatory, antinoceptive, nematicidal, hypoglycaemic, pesticidal, antiamoebic, antioxidant and antiparasitic activities.

ACKNOWLEDGEMENT

The authors are sincerely thankful to the University Grant Commission- Basic Scientific Research (UGC-BSR), New Delhi for financial support. Authors are also thankful to Head of The Department Botany and Microbiology, Guru Kangri University, Haridwar, Uttarakhand (India) for providing Library facilities.

REFERENCES

51. Sohal SK, Rup PJ, Kaur H, Kumari N, Kaur J. Evaluation of the pesticidal potential of the congress grass, Parthenium hysterophorus Linn. On the mustard

58. Valdés AFC, Martínez JM, Lizama RS, Gaitén YG, Rodríguez DA, Payrol JA. In vitro antimarial activity and cytotoxicity of some selected cuban medicinal plants. Revista Del Instituto De Medicina Tropical De Sao Paulo 2010; 52, 197–201.

