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INTRODUCTION
Glucokinase (GK) is a cytoplasmic enzyme expressed 
predominantly in pancreatic β-cells and liver hepatocyte, and 
catalyzes the conversion of glucose to glucose-6-phosphate 
with the help of adenosinetriphosphate.1-2 In pancreatic 
β-cells of the pancreas, GK regulates glucose-stimulated 
insulin release, and in liver hepatocytes of liver, it controls 
the breakdown of sugars. GK acts as an emergent drug 
target for treatment and management of type 2 diabetes due 
to its key function in controlling sugar breakdown. Small 
molecule allosteric activators of human GK are the unique 
class of therapeutic candidates that allosterically activate 
GK and express their hypoglycemic potential.2-4 Several GK 
activators had been progressed into late phases of clinical 
trials including AZD6370, AZD1656, MK-0941, Piragliatin 
and AMG151; even though strong decrease in blood sugar 
was observed, potential adverse reactions were also reported, 
such as hypoglycemia and elevated levels of triglycerides 
suggesting further a strong need of developing safe and potent 

GK activators.5-6 Large numbers of plants and parts of the 
plants were reported with their anti-diabetic properties. Various 
types of plant-derived active principles representing several 
bioactive compounds have established their beneficial role for 
possible use in diabetes therapeutics.7-8 This leads to increasing 
demand for the discovery of natural products as allosteric 
GK activators with fewer side effects. Recently, some plant-
based compounds, including glycolipids (Glucolipsin A and 
B),9 flavonoids (eupatilin, mangiferin, and kaempferol),10-12 
alkaloids (camptothecin),13 lipid derivative (guggultetrol)14 and 
steroidal derivative (coaglunide)15 were reported as allosteric 
activators of human GK. 

Sapium ellipticum (Hochst) Pax belonging to the 
Euphorbiaceae family is generally denoted as “jumping seed 
tree” and is broadly distributed in eastern and tropical Africa. 
In southwest Nigeria, especially amongst the Ilorin indigenes, 
this plant is prevalently called as “aloko-ạgbọ.” Numerous 
therapeutic properties were traditionally linked with this 
plant including treatment of scurvy and stomatitis in Central 
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Africa; treatment of enlarged spleen in babies and used for 
malaria by adults in the East Africa; treatment of wounds, 
sore-eyes and abdominal swelling in Tanzania; treatment of 
eczema and as purgative in Congo; treatment of stammering in 
Zaire; and to relieve pains of head, chest, shoulders and back 
in Tanganyika.16-18 Various types of phytoconstituents were 
reported in leaf extracts of S. ellipticum including flavonoids 
(amentoflavone and luteolin-7-glucoside), triterpenoids 
(lupeol, lupeol acetate, beta-amyrin, lupenone, and acetyl 
aleuritolic acid), steroidal derivatives (stigmasterol and 
beta-sitosterol), phenols (alpha-tocopherol), anthraquinones, 
alkaloids, glycosides, and cardiac glycosides.19-21 The leaves 
of S. ellipticum showed cytotoxic activity against HeLa 
cervix adenocarcinoma cells, almost comparable to reference 
ciplastin.22 S. ellipticum was used for hypertension, antenatal 
health, sexually transmitted infections and epigastric pain.23 
Methanol extract of S. ellipticum leaves showed significant free 
radical scavenging (antioxidant) activity in a dose-dependent 

fashion.21,24,25 Dichloromethane extract of S. ellipticum bark 
showed anti-fungal activity.26 Different extracts of S. ellipticum 
leaves showed antimicrobial activity against human pathogenic 
microbes.21 Ethanol leaf extract of S. ellipticum was reported to 
maintain lipid homeostasis in streptozotocin-induced diabetic 
rat model.27 Ethanol extract of S. ellipticum showed inhibitory 
effects against enzymes involved in carbohydrate metabolism 
including pancreatic α-amylase and intestinal α-glucosidase.28 
Recently, the ethanolic leaf extract of S. ellipticum was 
reported to increase the catalytic activity of GK and showed 
antidiabetic potential in streptozotocin-induced diabetic Wistar 
rat model.29-31 

In the current investigation, some phytoconstituents 
of S. ellipticum leaf extract including five-triterpenoids, 
two-flavonoids, two-steroidal derivatives and one-phenolic 
compound were selected for the in-silico evaluation using 
molecular docking studies to explore their binding mode and 
interactions with the human GK enzyme (Table 1). 

Table 1: Compounds selected for the in-silico molecular docking studies with human GK protein. 
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MATERIALS AND METHODS

Prediction of pharmacokinetic parameters
All the compounds selected for molecular docking studies were 
evaluated for the prediction of pharmacokinetic parameters 
associated to absorption, distribution, metabolism, and 
excretion (ADME) by employing FAF-Drugs 4 server; and 
accessed for drug-likeness using Lipinski’s rule.32-33

Molecular docking studies
Molecular docking investigations were performed for the 
selected compounds in the allosteric site of GK employing 
AutoDock Vina34 and AutoDock Tools (ADT).35 The 2D 
chemical structures (“SDF” format) of all the ligands were 
downloaded from the PubChem36 followed by conversion 
to 3D (“MOL2” format) using “Frog2” server.37 The ligands 
(“MOL2” format) were converted to “PDBQT” files using 
ADT. After assessing some co-crystallized structures for the 
target proteins available in the protein data bank, the best ligand-
bound complex was selected (PDB ID: 3IMX) based on higher 
resolution and fundamental binding interactions between the 
GK and small molecule GK activators. The “PDB” file of GK 
was edited using PyMOL (The PyMOL Molecular Graphics 
System, Version 2.0, 2018, Schrödinger, LLC.) by removing 
the co-crystallized activator, all the water molecules along with 
other non-interacting species. The “PDBQT” file of GK protein 
was generated from “PDB” file using ADT.38-41 The “Grid” 
tool of ADT was used to calculate the grid parameters and all 
the information concerning input files, grid box (grid size and 
geometry of the allosteric site) and out files (docked molecules 
and log files) were saved in “txt” file.42 Docking was performed 
for all the ligands in the allosteric binding site of the GK protein 

using the command line on Windows. The reference ligand 
was docked in the allosteric binding site of the GK enzyme 
and compared with that of the co-crystallized GK activator 
for determining the accuracy of the docking protocol. The 3-D 
optimized ligands were docked in the allosteric binding site of 
the refined GK protein and scored using the scoring function. 
The binding free energy (ΔG, kcal/mol) for each compound was 
reported in log file and the binding interactions of the ligands 
in the allosteric site of GK were analyzed using PyMOL.43-44 

In silico prediction of toxicity
All the compounds were evaluated for the prediction of possible 
toxicity of these compounds using “pkCMS” online server 
tool.45-46 

RESULTS AND DISCUSSION

Prediction of ADME properties
ADME properties including molecular weight (MW), partition 
coefficient (log P), distribution coefficient (log D), water 
solubility (log Sw), topological polar surface area (tPSA), 
hydrogen bond donors (HBD), hydrogen bond acceptors 
(HBA), solubility (mg/L) and number of rotatable bonds 
(NRB) were calculated for the compounds chosen for the 
docking studies. Almost all of the compounds showed good 
pharmacokinetic (ADME) parameters for oral bioavailability 
(Table 2) and drug-likeness as contrived by using “Lipinski’s 
rule of five.” 

In silico docking studies
In silico molecular docking studies were performed to explore 
the affinity and binding interactions of the selected compounds 
using AutoDock Vina in the allosteric site of the GK protein 
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(PDB ID: 3IMX). The reference GK activator produced an 
analogous binding pattern and overlay on binding mode of 
co-crystallized GK activator (PDB ID: 3IMX) with ΔG of 
-9.0 kcal/mol validating accuracy of the docking procedure. 
Based on the lowest binding free energy (ΔG) and docking 
interactions in the allosteric site of GK protein, lupeol, alpha-
tocopherol, amentoflavone and luteolin-7-glucoside were 
further investigated in minutiae using PyMOL for exploring 
binding interactions of these compounds with the allosteric 
site residues of GK (Table 3). 

Super-imposing of the docked poses of lupeol (SE1), 
alpha-tocopherol (SE4), amentoflavone (SE5) and luteolin-7-
glucoside (SE10) with that of the co-crystallized GK activator 
(PDB entry: 3IMX) ((2R)-3-cyclopentyl-N-(5-methoxy[1,3]
thiazolo[5,4-b]pyridin-2-yl)-2-{4-[(4-methylpiperazin-1-yl)
sulfonyl]phenyl}propanamide) in the allosteric binding site 
of the GK enzyme demonstrated that the selected molecules 
had the similar binding and orientation pattern in the allosteric 
binding site of GK enzyme as that of the co-crystallized GK 
activator (Figure 1). 

The docked pose of lupeol showed H-bond interaction 
between ‘OH’ of 4-hydroxyphenyl group and backbone 
‘carbonyl’ of Arg63 residue with bond length of 4.0 Å and 
hydrophobic interactions with Pro66, Trp99, Ile211, Tyr214, 
Tyr215 and Val455 residues of the allosteric site of GK. Alpha-
tocopherol showed H-bond interaction (between phenolic 
‘OH’ and backbone ‘carbonyl’ of Arg63 residue with bond 
length of 2.8 Å) with GK protein. The phenolic ring of alpha-

tocopherol projected into the hydrophobic cavity displaying 
interactions with Val62, Ile211, Tyr214, His218, Leu451, and 
Val455 residues and side-chain protruded in the hydrophobic 
pocket comprising of Val91, Trp99, Tyr215 and His 218 
residues in an allosteric site of GK. Amentoflavone showed 
H-bond interactions between phenolic ‘OH’ and backbone 
carbonyl of Arg63 residue (bond length 2.6 Å), and ‘OH’ of 
the flavone moiety and ‘OH’ of Ser69 residue (bond length 4.2 
Å) of GK. The phenolic moiety of amentoflavone projected 
in hydrophobic pocket showing interactions with Ile211 
and Val455 residues, flavone moiety showed hydrophobic 
interactions with Pro66, Tyr214 and His218 residues in an 
allosteric site of GK. Luteolin-7-glucoside showed H-bond 
interactions between alcoholic ‘OH’ and backbone carbonyl 
of Arg63 residue (bond length 3.1 Å), and ‘OH’ of the flavone 
moiety and ‘OH’ of Ser69 residue (bond length 3.4 Å) in 
the allosteric site of GK. The 3,4-dihydroxy phenyl moiety 
of luteolin-7-glucoside protruded in the hydrophobic cavity 
displaying interactions with Val455 and Lys459 of the R13 
helix, along with Pro66 of the connecting region I and Ile159, 
flavone moiety packs between Ile211, Tyr214, Val455 and 
Ala456 residues of an allosteric site of GK (Figure 2).

Prediction of toxicity and safety
The possible toxicity (mutagenicity, carcinogenicity, 
cardiotoxicity, hepatotoxicity, and skin irritation) for the 
selected compounds was accessed using the “pkCSM” online 
server tool, which depends on the “graph-based signatures.” As 

Table 2: ADME properties predicted for the compounds selected for in-silico studies.
Comp. MW log P log D log Sw tPSA HBA HBD Solubility NRB
SE1 426.7 9.8 7.5 -8.6 20.2 1 1 75.6 1
SE2 468.8 9.4 7.8 -9.1 26.3 2 0 50.7 3
SE3 412.7 8.6 7.4 -7.5 20.2 1 1 237.2 5
SE4 430.7 9.7 8.9 -8.5 29.4 2 1 86.4 12
SE5 538.5 5.0 3.1 -6.5 181.1 10 6 759.4 3
SE6 414.7 9.3 7.8 -7.9 20.2 1 1 153.8 6
SE7 426.7 9.1 7.4 -8.2 20.2 1 1 111.5 0
SE8 424.7 9.6 8.0 -8.4 17.1 1 0 92.7 1
SE9 498.7 8.4 4.4 -8.0 66.4 4 1 162.9 3
SE10 448.4 0.7 0.1 -3.0 190.3 11 7 21372.5 4

Table 3: Binding interactions and docking score (ΔG) of selected compounds with human GK enzyme.

Comp.
H-bond interactions

Residues involved in hydrophobic interactions ΔGResidue(s) Distance (Å)
SE1 Arg63 4.0 Pro66, Trp99, Ile211, Tyr214, Tyr215, Val455 -8.2
SE2 Ser69 4.6 Pro66, Ile211, Tyr214, Val455 -7.6
SE3 Arg63 3.7 Pro66, Tyr214, Tyr215, Val455 -7.7
SE4 Arg63 2.8 Val62, Val91, Ile211, Tyr214, His218, Leu451, Val455 -8.6
SE5 Arg63

Ser69
2.6
4.2

Pro66, Ile211, Tyr214, His218, Leu451, Val455 -9.3

SE6 Ser69 3.1 Pro66, Tyr214, His218, Val455 -7.7
SE7 Arg63 3.2 Pro66, Tyr214, His218, Leu451, Val455 -7.4
SE8 Arg63 3.9 Pro66, Ile211, Tyr214, Leu451, Val455 7.6
SE9 Arg63 3.1 Pro66, Ile211, Tyr214, His218, Val455 7.2
SE10 Arg63

Ser69
3.1
3.4

Val62, Pro66, Ile159, Ile211, Val452, Val455, Ala456, Lys459 -8.7
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Figure 1: Super-positioning of the docked poses of lupeol (SE1), alpha-tocopherol (SE4), amentoflavone (SE5), and luteolin-7-glucoside (SE10) 
(white sticks) with that of PDB ligand 3IMX (grey sticks) in the allosteric site of GK.

Figure 2: Best docked poses of lupeol (SE1), alpha-tocopherol (SE4), amentoflavone (SE5), and luteolin-7-glucoside (SE10) showing H-bond 
interactions with the allosteric site residues of GK.
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per the results displayed in Table 4, all the selected compounds 
displayed little toxicity possibility. 

In summary, some compounds found in S. ellipticum were 
evaluated in silico using molecular docking studies for exploring 
binding interactions of these compounds with allosteric binding 
site residues of the human GK enzyme. Amongst these 
compounds, lupeol, alpha-tocopherol, amentoflavone, and 
luteolin-7-glucoside displayed appreciable binding interactions 
with allosteric site residues of GK supporting the in vitro GK 
activity of S. ellipticum leaf extract reported by Ighodaro et 
al., (2017). Structural modifications and further studies on 
these phytoconstituents could be done to develop safe and 
potent allosteric activators of the human GK enzyme for the 
treatment of diabetes.
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