Synthesis and Characterization of Some New (Tetrazole, Thiazolidin-4one) compounds derived from Drugs and Evaluation of their Biological Activities

Inas S. Mahdi¹, Selvana A Yousif², Sameaa J. Khammas³

¹Division of Basic Science, College of Agricultural Engineering Science, University of Baghdad, Baghdad, Iraq. ^{2, 3}Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq.

Received: 16th October, 19; Revised: 22th November, 19, Accepted: 15th December, 19; Available Online: 25th December, 2019

ABSTRACT

In this paper a new series of substituted tetrazole and Thiazolidin-4-one compound were synthesized by three steps. The first step involved the reaction of *p*-hydroxy benzaldehyde with dichloro ethane to result compound (1). The second step includes reaction of compound (1) with various amino drugs producing the corresponding Schiff bases (2-7), whereas the third step, involved preparation new tetrazole (8-13) and Thiazolidin-4-one (14-19) derivatives through reaction of the Schiff bases with sodium azide, mercaptoacetic acid respectively. The prepared compounds were characterized by FT-IR, ¹H-NMR spectroscopy and their physical properties in addition of study the biological effect for some of them.

Key words: Derivatives, Schiff bases, Tetrazole, Thiazolidine.

International Journal of Pharmaceutical Quality Assurance (2019); DOI: 10.25258/ijpqa.10.4.28

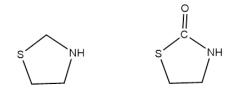
How to cite this article: Mahdi, I.S., Yousif, S.A. and Khammas, S.J. (2019).Synthesis and Characterization of Some New (Tetrazole, Thiazolidin-4-one) compounds derived from Drugs and Evaluation of their Biological Activities. International Journal of Pharmaceutical Quality Assurance 10(4): 720-727.

Source of support: Nil

Conflict of interest: None.

INTRODUCTION

Tetrazole (Tetrazacyclopentadiene, 1-*H* Tetrazole) are type of synthetic organic heterocyclic compounds consisting fivemember ring of four nitrogen atoms and one carbon atom (plus H). The simplest formula of tetrazole is (CN_4H_2) as shown below:



H H-tetrazole

Tetrazole is white to pale yellow solid crystalline, soluble in water and alcohole and acidic in nature belong to presence of five nitrogen atoms.^{1,2} Tetrazole and its derivatives are used for biological activities such as: antiviral, antifungal, antibacterial, anti-inflammatory, antitubercolous, antinociceptive, cyclo-oxygenase inhibitors, hypoglycemic and anticancer activities.³

Thiazolidines and thiazolidinones are five member ring heterocyclic compounds⁴ contain sulfur and nitrogen atoms and three carbon atoms and non-aromatic, they have structure shown below⁵:

The existence of interactive unsaturated ketone group in thiazolidin-4-ones is accountable for their antibacterial, antitubercular, anticonvulsant, analgesic,⁶⁻⁸ antioxidant, antiparkinson and non- narcotic analgesic activity.⁹⁻¹¹

Thiazolidine

Thiazolidinone

Accordingly, we wish to report herein the synthesis of compounds which possesses a chemically significant nitrogen heterocyclic nucleus tetrazole and thiazolidine-4-one.

MATERIALS AND METHODS

All chemicals utilized were of analytical degree and used without further purification.

Instrumentation

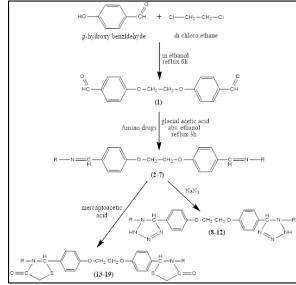
Melting points were registered with Stuart Melting Point apparatus. Infrared spectra Fourier-transform infrared spectroscopy (FTIR) were recorded on (Shimadzu-8300 spectrophotometer) in Ibn Sina State Company (ISSC). hydrogen-1 nuclear magnetic resonance (¹HNMR) spectra were recorded on a (Bruker-400 MHz) by using tetra methyl silane (TMS) as inner standard in (DMSO-d₆ solvent), ALalbayt University-Jordon. C.H.N.S. micro elemental analysis was measured by using a device (Euro Vectro-3000A Element Analyzer)/Ibn Al-Haitham College, University of Baghdad. The biological study was measured in Central Environmental Laboratory, College of Science, University of Baghdad, Baghdad, Iraq.

Methods

Synthesis of [4.4-ethane-1.2-diyl-1-bis(oxy)-dibenzaldehyde] $(1)^{12}$

A mixture of *p*-hydroxy benzaldehyde (4gm, 0.033mole) and dichloro ethane (12.4gm, 0.066mole) was mixed in (20mL) absolute ethanol then anhydrous sodium carbonate (7gm,0.066mole) added, the mixture was refluxed with stirring for 3hours. The mixture was cooled and filtered, the resulting precipitate was dried and recrystallized from ethanol.

Synthesis of Schiff Bases (2–7)¹³


Compound (1) (0.29gm, 0.001mole) and (0.001mole) from various amino drugs {2-amino benzothiozole, Trimethoprim, Metoclopramide, Sulfamethoxazole, 4-amino antipyrine (Ampyrone)} was mixed and dissolved in (15mL) absolute ethanol, (3) drops of glacial acetic acid was added then refluxed for 6 hours. The resulting precipitate was cooled, filtered, dried and recrystallized from ethanol.

Synthesis of Tetrazole derivatives (8–12)¹⁴

Schiff bases (1.06gm, 0.002mole) was dissolved in (20ml) tetrahydrofuran and mixed with (0.26gm, 0.004mole) sodium azide. The mixture refluxed in water path at $50-60^{\circ}$ C for 8-12 hours. The precipitate was cooled, filtered, dried and recrystallized from ethanol.

Synthesis of Thiazolidin-4-one derivatives (13–19)¹⁵

To a solution of Schiff bases (0.53gm, 0.001mole) in (15mL) tetrahydrofuran (THF); (0.13mL, 0.002mole) mercaptoacetic acid and a pinch of anhydrous zinc chloride (ZnCl₂) added and refluxed in water path for 16-18 hours. The separated precipitate was cooled, filtered, dried and recrystallized from ethanol.

Scheme 1: Synthetic route of preparation compounds

RESULT AND DISCUSSION

In the present work novel substituted tetrazole and thiazolidine-4-one compounds was prepared. The new derivatives following the reaction sequence depicted in Scheme 1, and was characterized and screened for their biological activity.

Figure 1: The effect of (C₂,C₃,C₅) on *S. aureus* and *S. epidermidis*

Figure 2: The effect of (C_2, C_3, C_5) on *p. aeruginosa* and *E. coli*

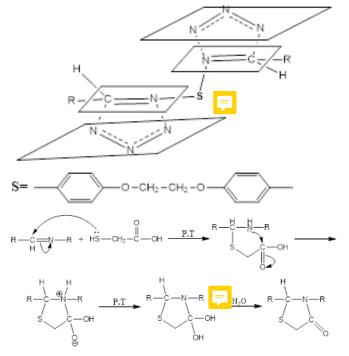


Figure 3: The effect of (C_6, C_7, C_9) on S. aureus and S. epidermidis

Figure 5: The effect of (C_{16}, C_{17}) on *S. aureus* and *S. epidermidis*

Figure 4: The effect of (C_6, C_7, C_9) on *p. aeruginosa* and *E. coli* Table 1: Molecular formula, physical properties and elemental analysis for all compounds.

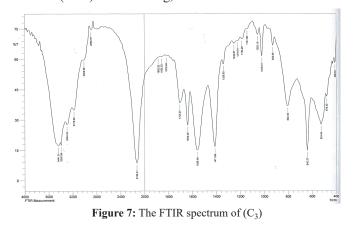
Figure 6: The effect of (C_{16}, C_{17}) on *p. aeruginosa* and *E. coli*

		Molecular Formula				Elementa (Calc.) %		alysis found	d
Comp. No.	- <i>R</i>	M.wt.(gm/mol)	Color	$M.P^{\circ}C$	Yield %	С%	H%	N%	<i>S%</i>
1	-	C ₁₆ H ₁₄ O ₄ 270.28	Beige	280-282	71	71.32 (71.10)	5.70 (5.22)	-	-
2		$\begin{array}{c} C_{30}H_{22}N_4O_2S_2\\ 534.65\end{array}$	Yellow	110–112	85	67.70 (67.39)	4.45 (4.15)	10.22 (10.48)	12.07 (11.99)
3	$\begin{array}{c} CH_3 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} C_{44}H_{46}N_8O_8\\ 814.88\end{array}$	Beige	177–179	56	64.98 (64.85)	5.85 (5.69)	13.88 (13.75)	-
4	$\begin{array}{c} H_{3}C-H_{2}C\\ H_{3}C-H_{2}C\\ H_{3}C-H_{2}C\end{array} \xrightarrow[C]{} 0\\ H_{3}C-H_{2}C\\ H_{3}C-H_{2}C\\ H_{3}\\ H_$	C ₄₂ H ₅₀ Cl ₂ N ₆ O ₄ 773.79	Yellow	118–120	65	65.41 (65.19)	6.73 (6.51)	11.03 (10.86)	-

Cont.	
5	

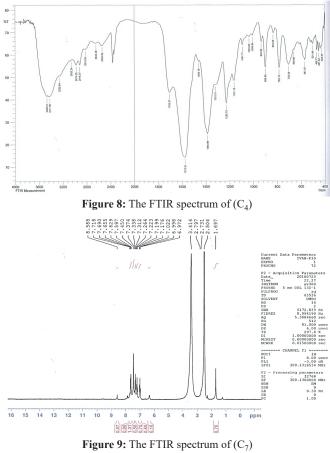
Cont.									
5		$\begin{array}{c} C_{36}H_{32}N_6O_8S_2\\ 740.80\end{array}$	Yellow	202–204	82	58.62 (58.37)	4.57 (4.35)	11.55 (11.34)	8.82 (8.66)
6	$\underset{H_{3C}}{\overset{H}{\longrightarrow}} \underset{CH_{3}}{\overset{H}{\longrightarrow}} \underset{H_{3C}}{\overset{K}{\longrightarrow}} \underset{H_{3C}}{\overset{K}{\overset{K}{\longrightarrow}} \underset{H_{3C}}{\overset{K}{\overset{K}}} \underset{H_{3C}}{\overset{K}{\overset{K}{\longrightarrow}} \underset{H_{3C}}{\overset{K}{\overset{K}}} \underset{H_{3C}}{\overset{K}} \underset{H_{3C}}{\overset{K}{\overset{K}}} \underset{H_{3C}}{\overset{K}} \underset{H_{3C}}{\overset{K}} \underset{H_{3C}}{\overset{K}} \underset{H_{3C}}{\overset{K}} \underset{H_{3C}}{\overset{K}} \underset{H_{3C}}{\overset{K}} \underset{H_{3C}}{\overset{K}} \underset{H_{3C}}{\overset{K}} \underset{H_{3C}}{\overset{K}} K$	$\begin{array}{c} C_{48}H_{46}N_8O_2S_2\\ 831.06\end{array}$	Yellow	160–162	83	69.44 (69.37)	5.70 (5.58)	13.64 (13.48)	7.95 7.72
7		$\begin{array}{c} C_{38}H_{36}N_6O_4\\ 640.73\end{array}$	Yellow	203–205	64	70.02 (71.23)	5.81 (5.66)	12.94 (13.12)	-
8		$\begin{array}{c} C_{30}H_{24}N_{10}O_{2}S_{2}\\ 620.71\end{array}$	White	304–306	72	58.33 (58.05)	4.07 (3.90)	22.42 (22.57)	10.40 (10.33)
9	$\begin{array}{c} CH_3 \\ 0 \\ 0 \\ H_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \begin{array}{c} H_2C \\ H_2C \\ N \\ N \\ N \end{array}$	$\begin{array}{c} C_{44}H_{48}N_{14}O_8\\ 900.94 \end{array}$	White	321-323	60	58.81 (58.66)	5.55 (5.37)	21.90 (21.77)	-
10	$H_{3}C-H_{2}C$ $N-H_{2}C-H_{2}C-H_{2}C-N-C$ $H_{3}C-H_{2}C$ $H_{3}C-H_{2}C$	$\begin{array}{c} C_{42}H_{52}Cl_2N_{12}O_4\\ 859.85\end{array}$	White	285–287	69	58,80 (58.67)	6.26 (6.10)	19.67 (19.55)	-
11		$\begin{array}{c} C_{36}H_{34}N_{12}O_8S_2\\ 826.86\end{array}$	Biege	226–228	73	52.39 (52.29)	4.22 (4.14)	20.50 (20.33)	7.81 (7.76)
12	$\underset{H_{3}C}{\overset{H_{3}C}{\overset{H_{3}}$	$\begin{array}{c} C_{48}H_{50}N_{20}O_2S_2\\ 1003.17\end{array}$	Biege	331–333	70	57.60 (57.47)	5.13 (5.02)	28.06 (27.92)	6.55 (6.39)
13		C ₃₈ H ₃₈ N ₁₂ O ₄ 726.79	White	320-322	67	62.95 (62.80)	5.33 (5.27)	23.30 (23.13)	-
14		$\begin{array}{c} C_{34}H_{26}N_4O_4S_4\\ 682.85\end{array}$	White	241–243	74	59.92 (59.80)	4.01 (3.84)	8.39 (8.20)	18.90 (18.78)
15	$\begin{array}{c} CH_3 \\ O \\ O \\ H_3 \\ CH_3 \\ CH_3 \end{array} \xrightarrow{H_2C} \left(\begin{array}{c} NH_2 \\ N \\ N \end{array} \right) \\ NH_2 \\ NH$	$\begin{array}{c} {\rm C}_{48}{\rm H}_{50}{\rm N}_{8}{\rm O}_{10}{\rm S}_{2}\\ 963.09\end{array}$	Beige	240–242	75	60.04 (59.86)	5.37 (5.23)	11.71 (11.63)	6.79 (6.66)

Cont.									
16	$\begin{array}{c} H_{3}C-H_{2}C\\ H_{3}C-H_{2}C\end{array} \xrightarrow[]{} N-H_{2}C-H_{2}C-H_{2}C-H_{2}C\\ H_{3}C-H_{2}C\end{array}$	C ₄₆ H ₅₄ C ₁₂ N ₆ O ₆ S ₂ 921.99	Beige	230–232	80	60.12 (59.92)	6.08 (5.90)	8.96 (9.12)	7.07 (6.96)
17		$\begin{array}{c} C_{40}H_{36}N_6O_{10}S_4\\ 889.01 \end{array}$	White	221–223	68	54.22 (54.04)	4.19 (4.08)	9.52 (9.45)	14.60 (14.43)
18		C ₅₆ H ₅₄ N ₈ O ₆ S ₆ 1127.47	White	234–236	72	59.78 (59.66)	4.95 (4.83)	9.97 (9.94)	17.15 (17.06)
19		$\begin{array}{c} C_{42}H_{40}N_6O_6S_2\\ 788.93 \end{array}$	Beige	217–219	84	64.10 (63.94)	5.22 (5.11)	10.74 (10.65)	8.25 (8.13)


The FTIR spectrum of compound 1 shows the frequency of (C=O) groups at 1654 cm⁻¹, 1681 cm⁻¹, and absorption band at (3062)cm⁻¹ due to stretching vibration of (C-H) aromatic ring, other bands are shown in Table 2.

Reaction of compound 1 with diverse amino drugs leads to obtain Schiff bases (2-7).

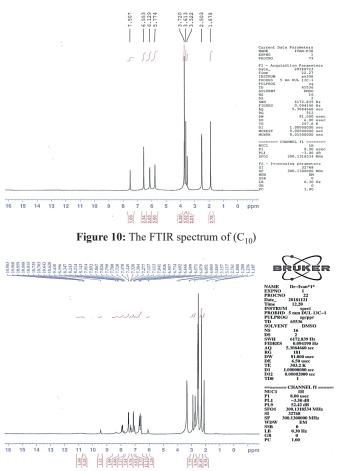
The FTIR spectrum of Schiff base (3), Figure 7, shows absorption band at (3425, 3448) cm⁻¹ due to the asymmetric and symmetric stretching vibration of the (NH₂) group and appearance band at (1662)cm⁻¹ for (C=N) group. These bands and other compounds bands are shown in Table 2.

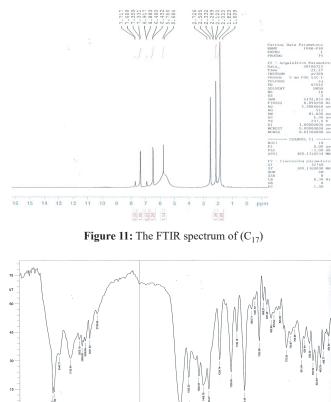

Tetrazole derivatives (8-12) was obtained by refluxing of Schiff bases with sodium azide. The mechanism for this reaction is a cyclo addition that called [1-3 dipolar cyclo addition reaction]. It is include the addition of unsaturated group (dipolarphiles) to 1-3 dipoles , a molecule handling resonance contributors that a positive and negative charge were placed in (1,3-position) relative to each other, as shown below:¹⁶

Compound (10), Figure 10, shows characteristic band at: (2129)cm⁻¹ due to (=N-N=C-) azide group and other absorption bands at: (1639)cm⁻¹ for (C=N),(640)cm⁻¹ for (C-Cl) and (1558) cm⁻¹ for (C=C) aromatic ring, these are listed in Table 2.

The other route, reaction of Schiff bases with mercaptoacetic acid in (THF) produced Thiazolidin-4-one compounds. The proposed mechanism of this reacton is shown below:

The FTIR spectrum of thiazolidine compound,¹⁷ Figure 11 shows multiple bands at : (1226)cm⁻¹ for (C=S) , (1705) cm⁻¹ for (C=O) amide and at (3417, 3468) cm⁻¹ due to the stretching vibration for NH₂ group.




IJPQA, Volume 10 Issue 4 October 2019 - December 2019

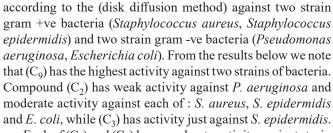
G	v(C=O)	v(C=N)	v(C=C)	Table 2: FTIR spe $v(C-H)cm^{-1}$	$v(C-H)cm^{-1}$	v(C-N)		
Comp. No.	cm^{-l}	cm^{-l}	cm^{-l}	aliphatic	aromatic	cm^{-l}	$v(C-O) \ cm^{-1}$	Other Band cm ⁻¹
1	1681		1543	2831	3236	-	1300,1315	-
1	1654	-	1593	3062	5250	-	1373,1388	-
2	-	1643	1531	2835	(3128-	1415,1446	1284	υ2(C-S) 721, 740
-			1562	2900	3275)	1110,1110	1311	02(0.5)721,710
3	-	1662	1508	(2831-	3155	1423,1469	1238	υ(NH ₂) 3425, 3448
			1593	2958)			1334	
4	1681	1635	1558	(2800-	3224	1411	1253	v(C-Cl) 817
			1585	2974)		1446	1292	v2(-NH) 3325, 3402
5	-	1681	(1504-	(2754-3008)	(3143-3298)	1415	1265	υ2(-NH) 3379, 3468
			1597)			1469	1311	υ2(-SO ₂) (1145-1157),
								(1365-1366)
								υ2(C-S) 640,682
6	-	1651	(1512-	(2738-2820)	(3159-3294)	1412	1257	υ2(C=S) 1018, 1161
			1577)			1450	1334	υ2(-NH) 3398, 3487
7	1708	1647	1585	(2808-2989)	· · · · · · · · · · · · · · · · · · ·	1411	1276	υ(N-N)
					3182)	1496	1357	
8	-	1639	1562	2889	(3012-3174)	1411	1246	υ(-NH) 3390, 3437
							1338	υ(C-S) 640
								v(=N-N=C-)azide 2133
9	-	1640	1566	2877	(3024-3189)		1288	υ(NH ₂) 3390, 3452
						1446	1334	υ(=N-N=C-)azide 2122
10	1705	1639	1558	2889	(3008-3178)	1411	1249	υ(-NH) 3390,3441
							1338	υ(C-Cl) 640
								υ(=N-N=C-)azide 2129
11	1693	1639	1562	2893	(3039-3182)	1420	1243	υ(-NH) 3392, 3451
	1705						1330	υ(C-S) 642
								υ(-SO ₂) (1155-1360) υ(=N-N=C-)azide 2130
12	1691	-	1577	2889	3120	1434	1219	υ(-NH) 3466
12	1091	-	1377	2009	5120	1-J-	1350	υ(N-N) 1525
							1550	v(C=S) 1039
13	1685	1636	1581	2935	(3010-3170)	1415	1253	υ(-NH) 3390, 3448
					(000000000)	1115	1332	υ(N-N) 1510
							1002	v(=N-N=C-)azide 2110
14	1680	1620	1572	2890	3122	1426	1330	υ(C-S) 630
15	1719	1641	1560	2932	3152	1440	1343	υ(NH ₂) 3460
					5102	1110	10 10	v(C-S) 640
16	1723	-	1545	2988	3165	1430	1322	υ(C-Cl) 790
	1,20		10.10	_,	0100	1.00	10==	υ(C-S) 589
17	1705	-	1573	2819-2974	3055	1458	1226	υ(-NH) 3417,3468
							1319	$v(-SO_2)$ 1161,1384
								υ(C-S) 702
18	1690	-	1551	2821-2940	3112	1447	1360	υ(-NH) 3455
								υ(C=S) 1050
								υ(C-S) 665
19	1715	-	1589	2890	3151	1421	1333	υ(N-N) 1550
								υ(C-S) 680

¹HNMR spectral data of Schiff base (2) showed signals at (δ ppm): (1.7) due to (CH) imine, (3.5) due to (CH₂-O) and multiple peak (6.4-7.9) due to protons of aromatic rings as shown in Figure 12.

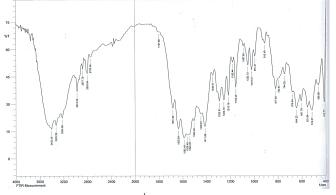
Figure 13 for Schiff base (3) shows the following characteristic chemical shifts at (δppm): (1.9) due to (CH₂), (3.5) due to (CH) imine, (3.7) for (CH₂-O), (3.8) due to (CH₃-O), (5.8) due to (NH₂) and finally multiple peak at (6.2–7.5) for protons of aromatic rings.

Figure 13: The¹HNMR spectrum of (C_3)

Figure 12: The¹HNMR spectrum of (C_2)


The ¹HNMR spectrum of Schiff base (5) showed in Figure 14.

¹HNMR spectrum of thiazolidine compound,¹⁶ Figure 15 showed signals at (δ ppm): 2.1 belongs to (CH) thiazolidin-4one ring, 2.3 for 2(CH₃), 2.6 due to 2(N-CH₂), 2.8 for (CH₂-N), 2.9 for(CH₂) near amide group, 3.4 belong to (O-CH₂), 6.1 for (NH) and (6.5-7.9) for protons of aromatic rings.


Table 3 shows ¹HNMR spectral data for some compounds mentioned earlier.

Antibacterial activity study¹⁷

Some of new synthesized compounds were investigated

Each of (C_5) and (C_6) have moderate activity against strain gram –ve bacteria and high activity against strain gram +ve bacteria, while (C_7) has activity against just strain gram +ve bacteria.

Figure 14: The¹HNMR spectrum of (C_5)

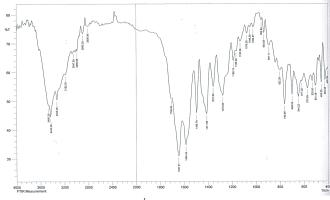


Figure 15: The¹HNMR spectrum of (C₁₆)

Table 3:	¹ HNMR	data f	for	compounds	(C ₂ ,	С3,	C ₅ ,	C ₁₆).
----------	-------------------	--------	-----	-----------	-------------------	-----	------------------	--------------------

Comp.	
No.	¹ HNMR spectral data δ ppm
2	1.7(s,1H,CH imine), 3.5(s,2H,CH ₂ -O), 6.4-7.9(m,8H,Ar-H)
3	1.9(s,1H,CH ₂), 3.5(s,1H,CH imine), 3.7(s,2H,CH ₂ -O), 3.8(s,9H,CH ₃ -O), 5.8(s,2H,NH ₂), 6.2-7.5(m,7H,Ar-H)
5	1.8(s,3H,CH3 imidazole), 2.5(s,2H,CH2-O), 5.5(b.s,1H,NH), 6.4(s,1H,CH imine) 6.8-7.8(m,8H,Ar-H)
16	2.1(s,1H,CH thiazolidin-4-one ring), 2.3(s,6H,2CH ₃), 2.6(s,4H,2N-CH ₂), 2.8(s.2H,CH ₂), 2.9(s,2H,CH ₂ near amide group), 3.4(s,2H,CH ₂ -O), 6.1(s,1H,NH), 6.5-7.9 (m,7H,Ar-H)

Table 4: Antibacterial activity of some prepared compounds.									
	Gram positive		Gram negative						
Comp. No.	Staphylococcus aureus	Staphylococcus epidermidis	Pseudomonas aeruginosa	Escherichia coli					
C ₂	12	12	9	15					
C ₃	-	30	-	-					
C ₅	22	30	11	12					
C ₆	17	20	15	15					
C ₇	15	20	-	-					
C ₉	40	40	40	40					
C ₁₆	19	25	16	22					
C ₁₇	18	25	16	23					

Compounds (C_{16}) and (C_{17}) have high activity against *S. epidermidis* and *E. coli* and moderate activity against *S. aureus* and *P. aeruginosa*.

The results of the examined compounds has been registered in Table 4.

REFERENCES

- Joule, J.A. and Mills, k. Heterocyclic chemistry.4th edition, Blackwell Publishing House; pp.507-11.
- 2. Rossi, S. editor Adelide. (2006). Australian Medicines Handbook.
- Mohite, P.B. and Bhaskar, V.H.(2011). Potential Pharmacological Activities of Tetrazoles in The New Millennium. Inter. J.Pharm. Tech. Res.,3(3);1557-1566.
- Zamani, K.; Faghihi, K.; Tofghi, T. and Shariatzadeh, M.R. (2004). Synthesis and Antimicrobial Activity of Some Pyridyl and Naphthyl Subsituted 1,2,4-Triazole and 1,3,4-Thiadiazole Derivatives.Turk. J. Chem.,28;95-100.
- Siddiqui, I.R.; Singh, P.K.; Singh, J. and Singh J.(2003). Synthesis and Fungicidal Activity of Novel 4,4-Bis(2-aryl-5-methyl unsubstituted-4-oxo-thiazolidin-3-yl)Bibenzyl. J..Agric.Food Chem., 51(24);pp.7062-7065.
- 6. Tripathi, A.; Tiwari, SS. and Singh, A. (1961).Chalcones as bactericidal compound, J. Ind. Chem. Soc., 38:931-32.
- Soni, B.K.; Singh, T. and Bhalgat, C.M.(2011). In-vitro antioxidant studies of some 1, 2, 3-thiadiazole derivatives, Int. J. Res. Phar. Biomed. Sci., 24:1590-92.
- Singh, T. et al, (2012).Synthesis charitization and pharmacological activity of novel thiadiazole analogues, Int. Res. J. Phar., 34:390-94.
- Srivastava, V.K. and Singh, S. (1987).Synthesis of corresponding thiazolidinones and azetidinones by the reaction of 2-alkyl, 3-arylideneamino-4- quinazolinones with thioglycolic acid and

chloroacetyl chloride respectively. These compounds were found to show significant antiparkinsonism activity in vivo in rats and mice, Ind.J.Chem., 26:652-56.

- Kato, T. (1999).Synthesized 2- (3,5-di-tert-butyl-4-hydroxy phenyl)-3- (3-N- methyl- (2,3,4- methylenedioxy)- phenyl- ethyl amino propyl-1,3- thiazolidin-4- one and evaluated for Ca+ + antagonist possessing both Ca+ + over load inhibition and antioxidant activity. J. Med. Chem., 42:3134-46.
- Swinyard, E.A.; Brown, W.C. and Goodman, L.S. (1952). The anticonvulsant effect of benzhydryl piperazines on pentylenatetrazol- induced seizures in mice, J. Pharm. Exp. Ther.,106:319-30.
- Balram, S.; Mahendra, S. R.; Rambabu, S.; Anil, B. and Sanjay, S. (2010).Synthesis and evaluation of some new benzothiazole derivatives as potential antimicrobial agents. Europ Journal of Medicinal Chemistry,45(7): 2938-2942.
- Adday, S. T. (2014). Synthesis and Characterization of Some New Substituted Benzimidazole Derivatives. M. Sc. Thesis, chemistry Department, College of Science for women, Baghdad University.
- N. Adil Salih,(2005).Ph.D. Thesis, College of Science, AL-Nahrain University.
- Al-Majidi, S.M.H. and Al-Khuzaie, M.G.A. (2014) Asian, J.chem. 26: 18417-18424.
- Pradip, D. and Berad, B. N. (2008).Synthesis Characterization and Antimicrobial Study of Substituted bis-[1,3,4]-Oxadizole,bis-[1,3,4]-triazole Derivatives. J. Indian Chem.Soc. 85(4):1153-115.
- Anesini C. and Perez C. (1993) Screening of plants used in argentic folk medicine for antibacterial activity, J. Ethnrophrmacol, 39(2):35-47.
- Silverstien, P. M. and Bassler, G. C.(1963). "Spectrophotometric identification of organic compounds" 3rd ed., U. K. Academic press.