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INTRODUCTION
Metabolic syndrome (MS) is a disease condition characterized 
by numerous related clinical conditions such as central obesity, 
reduced insulin sensitivity, hypertension, hyperlipidemia, and 
cardiovascular diseases, and is progressively prevailing in the 
industrialized nations globally.1-2 Peroxisome proliferator-
activated receptors (PPARs) control expression of the genes 
responsible for controlling the breakdown of carbohydrates, 
fatty acids and cholesterol, and cell proliferation. PPARδ 
(NR1C2) possesses 441 amino acid residues and is expressed 
universally in each tissue of the human body, usually at higher 
levels compared to PPARα and PPARγ, but it is the least-
studied PPAR. Though, it is predominantly abundant in the 
body tissues linked to the catabolism of lipids such as kidney, 
hepatic system, intestine, adipose tissue, and brain. It controls 
β-oxidation of the fatty acids, primarily in the skeletal muscles 
and muscles of the cardiac system, and controls concentrations 
of glucose and cholesterol in blood.3-7 Investigations conducted 
on animals indicate that the stimulation of PPARδ outcomes 
in numerous favorable pharmacological effects such as 

decreased weight-gain, augmented lipid metabolism in the 
skeletal muscles and cardiovascular function, as well as 
suppressed atherogenic inflammation. PPARδ controls the 
expression of various enzymes that are linked to glucose 
metabolism and β-oxidation of fatty acids via direct regulation 
of transcription and repression of the inflammatory reactions 
in the macrophage cells. These therapeutically valuable 
actions of PPARδ stimulation are a result of the ability of 
PPARδ to control production and breakdown of energy, 
diminished fat problem, and defense against lipo-toxicity 
triggered due to the buildup of lipids. The actions of PPARδ 
agonists are analogous to the circumstances due to physical 
exercise, fasting, and cold exposure. Thus, PPARδ represents 
an emergent pharmacotherapeutic target for the management 
of MS and the development of selective PPARδ agonists 
might be advantageous in the therapeutics of MS.8-12 The 
results from the ligand-binding assays recommend that 
diverse types of lipid-based derivatives, including saturated 
fatty acids, polyunsaturated fatty acids, and eicosanoids 
(like prostaglandin A1 and carboprostacyclin) interacts with 
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PPARδ.13-14 In addition to these natural endogenous agonists of 
PPARδ, a great number of selective synthetic organic molecules 
of diverse chemical nature were developed in past two decades 
which were more strong agonists of PPARδ compared to 
the natural endogenous agonists having pharmacologically 
useful roles in disturbed metabolism of lipids, central obesity 
and reduced sensitivity of insulin.15-18 Efforts are going on 
even now to design newer, selective, and strong agonists of 
PPARδ with better safety profile for the management of MS 
and some had advanced in the clinical trials. However, no 
PPARδ agonist is available/approved clinically for human use. 
Upcoming usage of safe, specific and highly effective PPARδ 
agonists in down-regulating major metabolic disorders could 
relieve some of the major health concerns worldwide.19 Some 
plant-based compounds including 2,4-dimethyl-4-hydroxy-16-
phenylhexadecanoic acid 1,4-lactone,20 4′-geranyloxyferulic 
acid,21 3’,5’-dimethoxy-7-hydroxyisoflavone,22 ombuin-3-O-β-
D-glucopyranoside,23 panduratin A24 and bavachinin25 were 
reported as potent and selective PPARδ agonists. 

Recently, ethanolic extract of Artemisia iwayomogi was 
reported to activate PPARδ, resulting in the stimulation of 
fatty acid oxidation in the skeletal muscles. A. iwayomogi is 
locally called as ‘haninjin’ or ‘dowijigi’, a habitual herb mostly 
abundant in Korea and belongs to the family Compositae.26 A. 
iwayomogi has been utilized for vegetables and meals including 
tea, rice cake, and soup and also used for the therapeutics of 
numerous disease conditions such as hepatitis, inflammation, 
metabolic syndrome and immune-related illnesses (for liver 
protection), anticancer, antibacterial, antifungal and as a 
diuretic.26-28 Various types of phytoconstituents were reported 
in A. iwayomogi including coumarins, flavonoids, phenolic 
compounds, terpenoids (monoterpenes, diterpenes, and 
triterpenoids) and caffeoylquinic acid derivatives.29-34

In the current investigation, a total of 28 phytoconstituents 
of A. iwayomogi including 4 coumarin derivatives, 12 
flavonoids, 5 phenolic compounds and 7 caffeoylquinic acid 
analogs were selected for the in-silico evaluation using docking 
studies in order to explore their binding mode and interactions 
with the PPARδ protein (Figure 1). 

MATERIAL AND METHODS

Prediction of pharmacokinetic parameters
All the phytoconstituents selected for the in silico molecular 
docking studies were evaluated for the prediction of 
pharmacokinetic parameters associated to absorption, 
distribution, metabolism, and excretion (ADME) by employing 
FAF-Drugs4 (‘Free ADME-Tox Filtering’ tool); and accessed 
for drug-likeness using Lipinski’s rule.35-36 

In silico prediction of toxicity
All the phytoconstituents were evaluated for the prediction 
of possible toxicity and safety of these compounds using 
“pkCMS” online server tool (a machine learning platform to 
predict the pharmacokinetic characteristics of small molecules 
which utilize graph-based signatures for development of 
predictive models).37-38

Molecular docking studies
Molecular docking investigations were performed for the 
selected phytoconstituents in the ligand-binding site of PPARδ 
employing AutoDock Vina39 and AutoDock Tools 1.5.6 
(ADT).40 The 2D chemical structures (“SDF” format) of the 
ligands (selected phytoconstituents) were downloaded from 
the “PubChem” database41 or sketched using MarvinSketch 
(Marvin, Version 18.5.0, 2018, ChemAxon Ltd., Budapest, 
Hungary) followed by conversion to 3D (“MOL2” format) 
using “Frog2” server.42 The ligands (“MOL2” format) were 
converted to “PDBQT” files using ADT. After assessing a 
number of co-crystallized structures for PPARδ available in 
the protein data bank, the best ligand-bound complex was 
selected (PDB entry: 2Q5G) based on higher resolution and key 
binding interactions between the PPARδ and small molecule 
agonists. The “PDB” file of PPARδ protein was edited using 
PyMOL (The PyMOL Molecular Graphics System, Version 
2.0 Schrödinger, LLC.) by removing the A-chain of protein, 
co-crystallized agonist, all the water molecules along with 
other non-interacting species. The “PDBQT” file of PPARδ 
protein was generated from “PDB” file using ADT.43-44 The 
“Grid” tool of ADT was used to calculate the grid parameters 
and all the information concerning input files (PPARδ protein 
and ligands), grid box (grid size and geometry of the ligand-
binding site of PPARδ) and out files (docked molecules and log 
files) were saved in “txt” file.45-46 Docking was performed for 
all the ligands in the binding site of the PPARδ protein using 
the command line on Windows. The reference ligand (PDB 
entry: 2Q5G) was docked in the binding site of PPARδ and 
compared with that of the co-crystallized PPARδ agonist for 
determining the accuracy of the docking protocol. The 3-D 
optimized ligands were docked in the ligand-binding site of 
the refined PPARδ protein and scored by the scoring function. 
The binding free energy (ΔG, kcal/mol) for each compound 
was reported in a log file, and the binding interactions of the 
ligands in the ligand-binding site of the PPARδ protein were 
analyzed using PyMOL molecular graphics tool.47-49 

RESULTS AND DISCUSSION

Prediction of ADME properties
The ADME properties such as molecular weight (MW), 
partition coefficient (log P), distribution coefficient (log D), 
water solubility (log Sw), topological polar surface area (tPSA), 
hydrogen bond donors (HBD), hydrogen bond acceptors 
(HBA), solubility (mg/L) and number of rotatable bonds (NRB) 
were calculated for all the phytoconstituents chosen for the 
docking studies. Almost all of the compounds showed good 
pharmacokinetic ADME parameters for oral bioavailability 
(Table 1) and drug-likeness as contrived by using “Lipinski’s 
rule of five.”

Prediction of toxicity and safety
The possible toxicity (mutagenicity, carcinogenicity, 
cardiotoxicity, hepato-toxicity and skin irritation) for all the 
phytoconstituents selected for the in-silico docking studies was 
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Figure 1: Phytoconstituents of A. iwayomogi selected for the in-silico molecular docking studies with the PPARδ protein. 
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accessed using “pkCSM” online server tool which depend on 
the “graph-based signatures”. As per the results depicted in 
Table 2; all the selected phytoconstituents displayed little or 
no toxicity possibility. 

In silico docking studies
In silico molecular docking, investigations were performed 
to explore the affinity and binding interactions of these 
phytoconstituents using AutoDock Vina in the ligand-binding 
site of PPARδ. The reference PPARδ agonist produced an 
analogs binding pattern and overlay on the binding mode of 
co-crystallized PPARδ agonist (PDB entry: 2Q5G) with ΔG 
of -9.1 kcal/mol validating accuracy of the docking procedure. 
Amongst the selected phytoconstituents evaluated in silico, 
compounds 1–5, 7–10, 15, 19–22, 25, and 26 demonstrated 
considerable binding in the ligand-binding site of PPARδ as 
determined by analyzing their bonding in terms of H-bond and 
hydrophobic interactions and binding free energy (Table 3). 
For the rest of the molecules, the docking algorithm produced 
a different binding pattern, and molecules were randomly 
oriented in the binding site. 

Based on the lowest binding free energy (ΔG) and docking 
interactions in the binding site of the PPARδ, compounds 2, 9, 
15, 21, 22 and 25 were further investigated in minutiae using 
PyMOL for exploring binding interactions of these compounds 
with the ligand-binding site residues of PPARδ. Super-imposing 
of the docked poses of scopolin (2), patuletin (9), patuletin-3-
glucoside (15), 1,2-bis(4-hydroxy-3-methoxyphenyl)prop-1,3-
diol (21), 3-caffeoylquinic acid (22) and 1,3-dicaffeoylquinic 
acid (25) with that of the co-crystallized PPARδ agonist, 
{7-[2-(3-morpholin-4-yl-prop-1-ynyl)-6-(4-trifluoromethyl-
phenylethynyl)-pyridin-4-ylsulfanyl]-indan-4-yloxy}-acetic 
acid (PDB entry: 2Q5G) in the ligand-binding site of PPARδ 
demonstrated that the selected molecules had the similar 
binding and orientation pattern in the ligand-binding site of 
PPARδ as that of the co-crystallized PPARδ agonist (Figure 2).  

The docked pose (Figure 3) of scopolin (2) showed H-bond 
interactions between ‘OH’ group and ‘NH’ of Gln286, 
Lys367 and His449 residues with bond length of 3.0, 4.2 
and 3.1 Å, respectively and the flavone moiety protruded in 
the hydrophobic pocket showing interactions with Cys285, 
Leu330 and Ile333 residues in the ligand-binding site of 

Table 1: ADME properties predicted for the phytoconstituents selected for the in-silico docking studies.

Comp. MW log P log D log Sw tPSA HBA HBD Solubility NRB
1 192.2 1.53 1.27 -2.27 59.6 4 1 19938.7 1
2 354.3 -1.05 -0.95 -1.28 138.8 9 4 98185.8 4
3 206.2 1.71 1.47 -2.36 48.7 4 0 19474.6 2
4 222.2 1.50 1.01 -2.32 68.9 5 1 21940.5 2
5 284.3 3.35 2.80 -3.94 79.9 5 2 5529.9 2
6 300.3 2.99 2.09 -3.80 99.8 6 3 6706.6 2
7 330.3 3.07 1.95 -3.94 109.0 7 3 6452.7 3
8 360.3 3.04 1.77 -4.01 118.3 8 3 6552.9 4
9 332.3 2.14 1.22 -3.45 140.3 8 5 10599.5 2
10 374.3 3.37 1.94 -4.22 107.3 8 2 5518.1 5
11 610.5 -1.29 -1.88 -2.58 269.1 16 10 46321.5 6
12 302.2 1.54 1.01 -2.99 131.0 7 5 15228.1 1
13 464.4 0.36 -1.16 -2.91 210.2 12 8 25415.6 4
14 626.5 -1.78 -2.93 -2.30 289.3 17 11 62750.7 7
15 494.4 0.33 -0.90 -2.99 219.4 13 8 24839.5 5
16 492.4 0.93 -0.69 -3.36 216.2 13 7 17035.4 5
17 550.5 0.45 -0.15 -3.13 165.8 12 5 24055.3 8
18 326.3 0.03 0.34 -1.58 108.6 7 4 66890.6 6
19 330.4 -0.97 1.11 -1.12 156.9 9 6 107661.2 4
20 344.3 -0.64 -0.85 -1.34 145.9 9 5 89936.0 5
21 320.3 1.37 1.32 -2.50 99.4 6 4 26302.7 6
22 354.3 -0.42 -3.69 -1.55 167.6 9 6 75550.3 5
23 354.3 -0.42 -3.69 -1.55 167.6 9 6 75550.3 5
24 368.3 -0.10 -0.13 -1.76 153.7 9 5 63294.2 6
25 516.4 1.52 -1.30 -3.55 214.1 12 7 14817.5 9
26 516.4 1.52 -1.28 -3.55 214.1 12 7 14817.5 9
27 516.4 1.52 -1.29 -3.55 214.1 12 7 14817.5 9
28 530.5 1.85 2.29 -3.77 200.3 12 6 12189.4 10
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Figure 2: Super-positioning of the best-docked poses of scopolin (2), patuletin (9), patuletin-3-glucoside (15), 1,2-bis(4-hydroxy-3-methoxyphenyl)
prop-1,3-diol (21), 3-caffeoylquinic acid (22) and 1,3-dicaffeoylquinic acid (25) (white sticks) on that of the co-crystallized PPARδ agonist (PDB 

entry: 2Q5G) (yellow sticks) in the ligand-binding site of the PPARδ protein.

Table 2: Toxicity prediction for the selected phytoconstituents obtained using “pkCSM” online server. 
Comp. Muta-genicitya Cardio-toxicityb Acute toxicityc Chronic toxicityd Max. tolerated dosee Hepato-toxicity Skin irritation
1 No No 1.950 1.378 0.614 No No
2 No No 2.391 3.756 0.393 No No
3 No No 2.345 2.408 0.494 No No
4 No No 2.326 1.825 0.560 No No
5 No No 2.238 1.790 0.032 No No 
6 No No 2.402 1.634 0.279 No No
7 No No 2.333 2.648 0.502 No No
8 No No 2.207 1.982 0.247 No No
9 No No 2.508 2.677 0.570 No No
10 No No 2.311 1.968 0.287 No No
11 No No 2.491 3.673 0.452 No No
12 No No 2.471 2.612 0.499 No No
13 No No 2.541 4.417 0.569 No No
14 No No 2.483 4.945 0.480 No No
15 No No 2.612 3.848 0.525 No No
16 Yes No 2.673 3.818 0.551 No No
17 No No 2.763 3.930 0.266 No No
18 No No 1.950 3.462 0.860 No No
19 No No 2.083 4.102 0.878 No No
20 No No 2.869 3.755 0.901 Yes No
21 No No 2.132 2.521 0.464 No No
22 No No 1.973 2.982 0.134 No No
23 No No 2.188 3.763 0.694 No No
24 No No 1.844 2.403 0.312 No No
25 No No 2.567 3.459 0.367 No No
26 No No 2.626 4.131 0.393 No No
27 No No 2.496 3.890 0.422 No No
28 No No 2.475 3.568 0.435 No No

aMutagenicity was accessed using AMES test; bCardiotoxicity was accessed using hERG-I and hERG-II inhibition; cAcute toxicity: Oral rat acute 
toxicity (i.e., LD50 in mol/kg); dChronic toxicity: Oral rat chronic toxicity (log mg/kg_bw/day); eMax. tolerated dose (Human): log mg/kg/day.
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Figure 3: Best docked poses of scopolin (2), patuletin (9), patuletin-3-glucoside (15), 1,2-bis(4-hydroxy-3-methoxyphenyl)prop-1,3-diol (21), 
3-caffeoylquinic acid (22) and 1,3-dicaffeoylquinic acid (25) showing H-bond interactions with the ligand-binding site residues of the PPARδ protein.

Table 3: Docking score (ΔG) and binding interactions of the selected phytoconstituents with the PPARδ protein. 
Comp. ΔG Residues involved in H-bond interactions (distance (Å)) Residues involved in the hydrophobic interactions
1 -6.0 Lys367 (4.6) Leu330 
2 -7.5 Gln286 (3.0), Lys367 (4.2), His449 (3.1) Cys285, Leu330, Ile333
3 -5.9 Gln286 (3.2), His449 (4.3) Leu330, Ile333, Leu339, Ile363
4 -7.4 Gln286 (3.1), Lys367 (4.3), His449 (3.0) Leu330, Ile333, Leu339
5 -7.7 Gln286 (3.3), Lys367 (4.9), His449 (3.4) Leu330, Ile333, Leu339
6 -5.3 - -
7 -6.9 Gln286 (4.6), His449 (4.6) Leu330, Ile333, Leu339
8 -6.7 Lys367 (4.5) Leu330 
9 -7.5 Gln286 (3.4), Lys367 (3.4), His449 (3.3) Cys285, Leu330, Ile333, Leu339, Ile363, Ile364
10 -5.4 Gln286 (3.4), His449 (4.5) Leu330, Ile333, Leu339
11 -5.9 - -
12 -5.8 - -
13 -5.4 - -
14 -6.4 - -
15 -7.8 Gln286 (3.4), Lys367 (3.6), His449 (3.2) Cys285, Ile326, Leu330, Ile333, Leu339, Ile364
16 -5.9 - -
17 -5.8 - -
18 -6.1 - -
19 -7.6 Gln286 (4.8), Lys367 (3.8), His449 (4.5) Cys285, Leu330, Ile333, Leu339
20 -6.7 Gln286 (3.0), His449 (4.0) Met228, Leu330, Ile333, Ile363, Ile364
21 -7.3 Gln286 (3.2), Lys367 (4.1), His449 (3.2) Leu330, Leu339, Val341, Ile364
22 -7.4 Gln286 (3.7), Lys367 (3.1), His449 (3.2) Ile326, Met329, Leu330, Ile333
23 -6.2 - -
24 -6.7 - -
25 -8.1 Gln286 (2.9), Lys367 (4.1), His449 (2.8) Phe226, Met228, Glu291, Leu330, Ile333, Ile363, Ile364
26 -6.8 Gln286 (3.8) Leu330, Ile333
27 -5.5 - -
28 -6.2 - -
1FA* -9.1 Gln286 (3.7), Lys367 (3.1), His449 (3.2) Cys285, Leu330, Ile333, Ile363, Ile364

*1FA: Co-crystallized PPARδ agonist used as control (reference ligand) in the in-silico docking study.



Molecular Docking Guided Screening of Phytoconstituents from Artemisia iwayomogi as Potential PPARδ Agonists

IJPQA, Volume 10 Issue 4 October 2019 – December 2019 Page 594

PPARδ. Patuletin (9) showed H-bond interactions (between 
phenolic ‘OH’ and ‘O’, and ‘NH’ of Gln286, Lys367 and His449 
residues with bond length of 3.4, 3.4 and 3.3 Å, respectively) 
with PPARδ. The 3,4-dihydroxyphenyl moiety of patuletin 
protruded in the hydrophobic pocket comprising of Leu330 
and Ile333 residues and flavone moiety showed hydrophobic 
interactions with Cys285, Leu339, Ile364, Ile364, and Ile365 
residues in the ligand binding site of PPARδ.

Patuletin-3-glucoside (15) showed H-bond interactions 
(between ‘OH’ and ‘NH’ of Gln286, Lys367 and His449 
residues with a bond length of 3.4, 3.6 and 3.2 Å, respectively) 
with PPARδ. Flavone moiety of patuletin-3-glucoside 
showed hydrophobic interactions with Ile326, Leu330 and 
Ile333 residues; and 3,4-dihydroxyphenyl ring protruded in 
the hydrophobic cavity showing interactions with Cys285, 
Leu330, Leu339 and Ile364 residues in the ligand binding site 
of PPARδ. 1,2-Bis(4-hydroxy-3-methoxyphenyl)prop-1,3-diol 
(21) showed H-bond interactions (between phenolic ‘OH’ and 
‘O’, and ‘NH’ of Gln286, Lys367 and His449 residues with 
bond length of 3.2, 4.1 and 3.2 Å, respectively) and hydrophobic 
interactions with Leu330, Leu339, Val341 and Ile364 residues 
in the ligand-binding site of PPARδ. 3-Caffeoylquinic acid (22) 
showed H-bond interactions (between phenolic ‘OH’ and ‘NH’ 
of Gln286, Lys367, and His449 residues with a bond length of 
2.8, 4.1 and 3.0 Å, respectively) with PPARδ. Caffeoyl moiety 
of 3-caffeoylquinic acid protruded in the hydrophobic pocket 
containing Ile326, Met329, Leu330, and Ile333 residues in 
the ligand-binding site of PPARδ. 1,3-Dicaffeoylquinic acid 
(25) showed H-bond interactions (between phenolic ‘OH’ 
and ‘NH’ of Gln286, Lys367, and His449 residues with a 
bond length of 2.9, 4.4 and 2.8 Å, respectively) with PPARδ. 
1,3-Dicaffeoylquinic acid showed H-bond interactions with 
Phe226, Met228, Glu291, Leu330, Ile333, Ile363, and Ile364 
residues in the ligand-binding site of PPARδ (Figure 3). 

The best-docked poses of the selected phytoconstituents 
and overlay with the PDB ligand of 2Q5G (standard PPARδ 
agonist) could help in predicting that compounds obtained 
from A. iwayomogi may possibly act as strong PPARδ 
agonists supporting the in vitro PPARδ agonistic activity of 
the ethanolic (95%) extract of aerial parts of A. iwayomogi 
reported by Cho et al., (2012)26.

In summary, 28 phytoconstituents of A. iwayomogi were 
evaluated in silico using molecular docking studies for exploring 
binding interactions of these compounds with the binding 
site residues of PPARδ. Amongst these phytoconstituents, 
scopolin, patuletin, patuletin-3-glucoside, 1,2-bis(4-hydroxy-
3-methoxyphenyl)prop-1,3-diol, 3-caffeoylquinic acid and 
1,3-dicaffeoylquinic acid displayed most significant binding 
interactions with binding site residues of PPARδ supporting 
the in vitro PPARδ agonistic activity of A. iwayomogi reported 
earlier. Almost all the selected compounds showed good 
pharmacokinetic properties for oral availability (or drug-
likeness) and presented a low toxicity profile (predicted using 
FAF-Drugs4 server and pkCSM online tool, respectively). 
Structural modifications and further studies on these 
phytoconstituents could be done to develop safe and potent 

PPARδ agonists for the treatment of disorders related to 
metabolic syndrome.
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