INTRODUCTION

The azo compound consists of (–N=N–) group in their structure, connected with aromatic ring and Heterocyclic system. Its formed by conjugation reaction between a diazonium salt and a conjugation agent. Azo, have applications such as inhibition of DNA RNA, dyes, nitrogen fixation, antibacterial.

Schiff bases or azomethine (C=N) Consisting of from condensation an amino compound and carbonyl compound. Schiff base derivatives exhibit biological activities such as significant exhibit antidepressant and cardiac stimulant, anticonvulsant antitumor activity, Candida albicans growth-inhibitory anti. All Heterocyclic Tetrazole we synthesis have a high biological activity such as five-membered. It has versatile applications in various medicinal chemistry, synthetic chemistry.

Thiazolidines (are unsaturated ring five-membered). Thiazolidines are heterocyclic compounds that have biological activity and semiconductor properties. The thiazolidine ring consists of nitrogen and sulfur atoms. Thiazolidine compounds are known to exhibit interesting and pharmacological activity. Specifically, they are applied, such as antiseizure, fungicida ic anti bacterial, antitubercular, antifungal, antiamoebic, diabetic and, anticonvulsant, hypoglycemic and non-narcotic analgesic. Imidazolidine are compound five-member heterocyclic contain nitrogen, carbon, and oxygen atoms in their ring structure. Imidazolidines are a well-known type of organic compound of excess interest due to their numerous pharmaceutical applications such as, hypotension, anticarcinogenic, or antibacterial. Quinazolines and quinazolinones are kinds of fused heterocycles that are of appreciable interest because of the diverse area of their biological properties. Activities of quinazoline derivatives, involve, anti-cancer anti-inflammation, analgesia, anti-virus, anti-spam, anti-bacterial, anti-cytotoxin. Thiazines are an important kind of heterocycles contain one atom nitrogen, one sulfur, and Oxygen.

EXPERIMENTAL

FTIR Spectra (400-4000 cm\(^{-1}\)) in KBr disk was recorded on a SHIMADZU FTIR-8400S Fourier transform. Melting points were measured using Stuart, UK. All Heterocyclic Tetrazole we synthesis have a high biological activity such as five-membered. It has versatile applications in various medicinal chemistry, synthetic chemistry.

Thiazolidines (are unsaturated ring five-membered). Thiazolidines are heterocyclic compounds that have biological activity and semiconductor properties. The thiazolidine ring consists of nitrogen and sulfur atoms. Thiazolidine compounds are known to exhibit interesting and pharmacological activity. Specifically, they are applied, such as antiseizure, fungicida ic anti bacterial, antitubercular, antifungal, antiamoebic, diabetic and, anticonvulsant, hypoglycemic and non-narcotic analgesic.

Imidazolidine are compound five-member heterocyclic contain nitrogen, carbon, and oxygen atoms in their ring structure. Imidazolidines are a well-known type of organic compound of excess interest due to their numerous pharmaceutical applications such as, hypotension, anticarcinogenic, or antibacterial. Quinazolines and quinazolinones are kinds of fused heterocycles that are of appreciable interest because of the diverse area of their biological properties. Activities of quinazoline derivatives, involve, anti-cancer anti-inflammation, analgesia, anti-virus, anti-spam, anti-bacterial, anti-cytotoxin. Thiazines are an important kind of heterocycles contain one atom nitrogen, one sulfur, and Oxygen.

Synthesis Azo Derivative

A diazonium solution was prepared by dissolve (1.36g, 0.01 mol) of p-amino acetophenone with imidazole in alkaline alcoholic media, the second step include react (1) with 2-amino_6_methylpyrimidin_4_ol in acid medium to get Schiff base derivatives(2)the last step include react(2) with (sodium azide, thioglycolic acid, glycine, alanine, Tryptophan, (2 amino benzoic acid), (2-mercaptobenzoic acid) to give (tetrazole(3), thiazolidine(4), imidazolidine(5-7), Thiazinie(8), Quinazoline (9) derivatives, respectively. All these derivatives Characterization by FTIR, 1H NMR, 13C-NMR, after that we studied the biological activity for all derivatives for all derivatives studied the anticancer for (2).

Keywords: Azo, Imidazolidine, Quinazoline, Schiff bases, Tetrazole, Thiazinie, Thiazolidine.
bath and stirred continuously for 1 hour, followed by adjusting the pH of the solution to pH=5. The precipitate formed was filtered, recrystallized from ethanol, washed with water then dried in air.

Synthesis Schiff bases Derivative

A mixture of equimolar quantities (1.00 mol) from (1) and (0.570 g) from (2-amin 6- methyl pyrimidin- 4-ol) and (3 drops) of glacial acetic acid was refluxed for 7-hour in 30 ml of ethanol. The reaction mixture was cooled and kept for (24 hs). The crystals found was filtered, dried, and recrystallized from ethanol.

Synthesis tetrazole Derivative

Compounds of (2) (0.0031 mole) were dissolved in (20mL) dioxane and mixed with (0.0031 mole) sodium azide. These mixtures were refluxed for (32) h at T = 55 °C. The Crystals found was filtered, dried, and recrystallized from ethanol.

Synthesis thiazolidine Derivatives

Thioglycolic acid (0.0031 mol) in 1, 4- dioxane (20 mL) was added to (0.0031 mol) of Schiff bases (2). Then added to the mixture (0.5 g m) anhydrous zinc chloride with stirring, then the mixture was refluxed for 16 hours. The reaction mixture was cooled and kept for (30 hs). Crystals found were filtered, dried, and recrystallized from ethanol.

Synthesis Thiazinie Derivatives

A mixture of Schiff bases (2) (0.0031 mol) dissolved in THF (15mL) and (alanine, glycine, Tryptophan) (0.002mol) was dissolved in THF(15mL) and refluxed for 48 hs. The reaction was then cooled and recrystallized from absolute ethanol.

Synthesis Quinazolin Derivatives

A solution (0.425) g, 0.0031 mL) of dissolved (2-amino benzoic acid) was added in a 20mL (1, 4-Dioxan) to (1.00 g, 0.0013 mol) of the Derivative 2 with 3 mL DMF water bath and at 101 °C with reaction Using thin-layer chromatography (TLC) and using the mobile phase(methanol -benzene)(1:4)(v-v). The solvent a was evaporated under pressure, and a 10% solution added(NaHCO3) and then filtration and re-crystallization with a mixture of (benzene: dioxin) by (2:1).

Synthesis Thiazinie Derivatives

The mixture (1.00 g, 0.0031 m) of the Derivative (2) was mixed with (0.477 g, 0.0031 m) of (2-mercapto benzoic acid) in (22 mL) of dry benzene and (3 ml)of DMF (5 drops) of (triethyl amine), followed by an escalation (46 h) at 50 °C with control. Interaction by thin-layer chromatography (TLC) and using mobile phases (benzene Methanol) and by(1: 4) (v: v) and then steaming the solvent under pressure a the addition of (10%) solution(NaHCO3) and the filtrate and re-crystallize by(1, 4-Dioxan).

RESULT AND DISCUSSION

1- **Compound (1):1-(4-((1H-imidazol-2-yl) diazeny l) phenyl) ethan-1-one).**

The 1H- NMR (DMSO) spectrum data of compound (1) show δ:8- (m, 4H, Ar-H), 2.6 (S, 3H, CH3), 9.19 (S, 1H, NH imidazol ring), 8.15 (S, 2H, CH imidazol ring). The 13C- NMR (DMSO) spectrum data of compound (1) show δ: 27.6 (C11), 197.5 (C10), 159.9 (C2, C3), 124.22 (C1), 150.3 (C8), 140 (C5, C4), 130.1 (C7, C6), 130.21 (C9). See Figures 1 and 2.

2- **Compound 2-((1-(4-((1H-imidazol-2-yl) diazenyl)phenyl)-ethylidene)amino)-6-methylpyrimidin-4-ol)**

The 1H NMR (DMSO)spectrum data of compound 2 show δ: 8.17 (m, 4H, Ar-H), 2 (S, 3H, CH3), 2.67 (S, 1H NH imidazol -benzene)(1:4)(v-v). The solvent a was evaporated under pressure, and a 10% solution added (NaHCO3) and then filtration and re-crystallization with a mixture of (benzene: dioxin) by (2:1).
Synthesis and Characterization of Some New Heterocyclic Derivatives and Studying of their Biological Activity (Anti-bacteria)

The 1H NMR (DMSO) spectrum data of compound (2) show δ: 22.96 (C_{11}), 24 (C_{10}), 124.2 (C_{2}, C_{3}), 140.9 (C_{1}), 149.3 (C_{6}), 140 (C_{5}, C_{4}), 127.68 (C_{7}, C_{6}), 130.03 (C_{9}). Caromatic (100-163). See Figures 3 and 4.

3- Compound 6-methylpyrimidin-4-ol compound with 1, 5-dimethyl-2, 5-dihydro-1H-tetrazole and 2-(p-tolyldiazenyl)-1H-imidazole

The 1H NMR (DMSO) spectrum data of compound (3) show δ: 6.53-8.34 (m, 4H, Ar-H), 2 (S, 3H, CH_{3}), 2.03, (S, 1H NH imidazol ring) 8.34, (S, 3H, CH_{3}), 2.67 pyrimidin ring, 5.50 (S, 1H OH). The 13C-NMR (DMSO) spectrum data of compound (2) show δ: 23.94 (C_{11}), 39.92 (C_{16}), 124.26 (C_{2}, C_{3}), 140.9 (C_{1}), 149.3 , 155 (C_{5}, C_{4}), 100.59 (C_{7}, C_{6}), 159.87 (C_{9}, C_{8}). Caromatic (100-163). See Figures 3 and 4.

4- 6-methylpyrimidin-4-ol compound with 2, 3-dimethyl-4-methylenehiazolidine and 2-(P-tolyldiazenyl)1H-

The 1H-NMR (DMSO) spectrum data of compound (4) show δ: 6.88-8.33 (m, 4H, Ar-H), 2 (S, 3H, CH_{3}), 2.03, (S, 1H NH imidazol ring) 8.34, (S, 3H, CH_{3}), 2.66 pyrimidin ring, 5.50 (S, 1H OH). The 13C-NMR (DMSO) spectrum data of compound (2) show δ: 27.66 (C_{11}), 40.02 (C_{16}), 124.26 (C_{2}, C_{3}), 141.9(C_{1}), 149.3 , 130 (C_{5}, C_{4}), 131 (C_{7}, C_{6}), 197.58 (C_{10}), C aromatic.(142-150.37). See Figures 7 and 8.

5- 2-(4-((1H-imidazol-2-yl)diazenyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methylimidazolidin-4-one.

The 1H NMR (DMSO) spectrum data of compound 5 show δ: 6.88-8.33 (m, 4H, Ar-H), 2 (S, 3H, CH_{3}), 2.03, (S, 1H NH
6. 2-(4-((1H-imidazol-2-yl)diazene)pheynyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)2, 5-dimethylimidazolidin-4-one.

The 1H NMR (DMSO) spectrum data of compound (6) show δ: 8.39 (m, 4H, Ar-H), 1.22 (S, 3H, CH$_3$), 8.40 (S, 1H NH imidazol ring), 2.64 (S, 3H, CH$_3$) 2.66 pyrimidin ring, 3.28 (S, 1H OH), 3.37 cm-for(S, 1H (N-H). The 13C-NMR (DMSO) spectrum data of compound (6) show δ: 29.14 (C$_{11}$), 34.03 (C$_{19}$), 41.15 (C$_{14}$) 124.27 (C$_{2}$, C$_{3}$), 128.7(C$_{13}$), 130.02 (C$_{5}$, C$_{4}$), 147.08 (C$_{7}$, C$_{6}$), 171.06. (C$_{13}$), C aromatic.(142-150.37). See Figures 11 and 12.

7. Compound 2-((1H-indol-3-yl)methyl)4-((4-hydroxy-6-methylpyrimidin-2-yl)amino)5, 5-dimethylpyrrolidin-3-one compound with 2-(phenyldiazenyl)-1H-imidazole. See Figure 13 and 14.

Figure 8: 13C-NMR spectrum of compound (4)

Figure 9: 1H NMR spectrum of compound (5)

Figure 10: 13C-NMR spectrum of compound (5)

Figure 11: 1H-NMR spectrum of compound (6)

Figure 12: 13C- NMR spectrum of compound (7)

Figure 13: 1H NMR spectrum of compound (7)
8- dihydroquinazolin-4(1H)-one 2-(4-((1H-imidazol-2-yl) diazenyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methyl-2, 3-dihydroquinazolin-4(1H)-one

The 1H NMR (DMSO)spectrum data of compound (8) show δ: 6.85-8.35 (m, 4H, Ar-H), 2.98 (S, 3H, CH$_3$), 8.47 (S, 3H, CH$_3$), 3.40 (pyrimidin ring), 5.35 (S, 1H OH), 4.73 cm$^{-1}$ (S, 1H, N-H). See Figure 15 and 16.

9- 2-yl)diazenyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methyl-2, 3-dihydro-4H-benzo[e][1, 3]thiazin-4-one

The 1H-NMR (DMSO)spectrum data of compound (9) show δ: 7.8-17 (m, 4H, Ar-H), 2(S, 3H, CH$_3$)1.99, (S, 1H NH imidazol ring)8.47, (S, 3H, CH$_3$), 3.40 pyrimidin ring, 5.35(S, 1H OH), 4.73 cm$^{-1}$ (S, 1H, N-H)5.29. The 13C-NMR (DMSO) spectrum data of compound (2) show δ: 23.39 (C$_{11}$), 40.10 (C$_{21}$), 39.95 cm$^{-1}$ for (C$_{14}$) 124.27 (C$_2$, C$_3$), 132.73(C$_{1}$), 100.36, 157.02 (C$_5$, C$_4$), 173.65 (C$_{12}$), C aromatic (100-157.37). See Figure 15 and 16.

Figure 14: 13C-NMR spectrum of compound (7)

Figure 15: 1H NMR spectrum of compound (8)

Figure 16: 13C-NMR spectrum of compound (8)

Figure 17: 1H NMR spectrum of compound (9)

Figure 18: 13C-NMR spectrum of compound (9)

Figure 19: Shows the effect of prepared compounds (1-9) on E. coli

IJPQA, Volume 11 Issue 1 Jan 2020 – Mar 2020

Page 42
Synthesis and Characterization of Some New Heterocyclic Derivatives and Studying of their Biological Activity (Anti-bacteria)

The 13C-NMR (DMSO) spectrum data of compound (9) show δ: 23.58 (C$_{11}$), 27.10 (C$_{20}$), 40.91, (C$_{14}$) 124.27 (C$_{2}$, C$_{3}$), 131.73(C$_{1}$), 100.36, 155.02 (C$_{5}$, C$_{4}$), 163.64 (C$_{12}$), C aromatic(100-157.37). See Figures 17 and 18.

BIOLOGICAL ACTIVITY

From the above studies, it can be concluded that the synthesized compounds exhibit significant antibacterial activity against

<table>
<thead>
<tr>
<th>Compounds No.</th>
<th>Name of compound</th>
<th>M.F</th>
<th>M.p (°C)</th>
<th>R_f</th>
<th>Color</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-(4-((1H-imidazol-2-yl) diazenyl)phenyl) ethan-1-one</td>
<td>C${11}$H${10}$N${4}$O${4}$</td>
<td>214.23</td>
<td>170-172</td>
<td>Light orange powder</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>6-methylpyrimidin-4-ol compound with 1, 5-dimethyl-2, 5-dihydro-1H-tetrazole and 2-(p-tolyldiazenyl)-1H-imidazole</td>
<td>C${16}$H${16}$N${10}$O${6}$</td>
<td>364.37</td>
<td>115-117</td>
<td>Yellow powder</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>6-methylpyrimidin-4-ol compound with 2, 3-dimethyl-4-methyleneithiazolidine and 2-(p-tolyldiazenyl)-1H-imidazole</td>
<td>C${11}$H${10}$N${4}$O${4}$</td>
<td>214.23</td>
<td>170-172</td>
<td>Light orange powder</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methylimidazolidin-4-one</td>
<td>C${24}$H${19}$N$_{7}$</td>
<td>405.47</td>
<td>177-178</td>
<td>Dark orange powder</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methylimidazolidin-4-one</td>
<td>C${26}$H${21}$N${7}$O${2}$</td>
<td>490.13</td>
<td>180-182</td>
<td>Dark orange powder</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2,5-dimethylimidazolidin-4-one</td>
<td>C${26}$H${21}$N${7}$O${2}$</td>
<td>489.13</td>
<td>128-135</td>
<td>Powder yellow dark</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-5-((1H-indol-3-yl)methyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methylimidazolidin-4-one</td>
<td>C${24}$H${21}$N${9}$O${2}$</td>
<td>481.13</td>
<td>190-200</td>
<td>Light brown powder</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one</td>
<td>C${24}$H${20}$N${6}$O${2}$S</td>
<td>456.52</td>
<td>220-225</td>
<td>Brown powder</td>
<td>83</td>
</tr>
<tr>
<td>9</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methyl-2,3-dihydro-4H-benzo[e][1, 3]thiazin-4-one</td>
<td>C${24}$H${20}$N${6}$O${2}$S</td>
<td>489.13</td>
<td>128-135</td>
<td>Powder yellow dark</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 1: Show biological activity for compounds (1-9)

<table>
<thead>
<tr>
<th>Compounds No.</th>
<th>E. coli</th>
<th>Staph. Aureus</th>
<th>Compounds No.</th>
<th>E. coli</th>
<th>Staph. Aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+++</td>
<td>++</td>
<td>6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>+++</td>
<td>+++</td>
<td>7</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+++</td>
<td>+++</td>
<td>8</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>4</td>
<td>++</td>
<td>_</td>
<td>9</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>5</td>
<td>++</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= No inhibition = inactive, + = (5–10) mm = slightly active, ++ = (11–20) mm = moderately active, +++ = (more than 24) mm = Good

<table>
<thead>
<tr>
<th>Comp.</th>
<th>Name of compound</th>
<th>M.F</th>
<th>M.p (°C)</th>
<th>R_f</th>
<th>Color</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-(4-((1H-imidazol-2-yl) diazenyl)phenyl) ethan-1-one</td>
<td>C${11}$H${10}$N${4}$O${4}$</td>
<td>214.23</td>
<td>170-172</td>
<td>Light orange powder</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>6-methylpyrimidin-4-ol compound with 1, 5-dimethyl-2, 5-dihydro-1H-tetrazole and 2-(p-tolyldiazenyl)-1H-imidazole</td>
<td>C${16}$H${16}$N${10}$O${6}$</td>
<td>364.37</td>
<td>115-117</td>
<td>Yellow powder</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>6-methylpyrimidin-4-ol compound with 2, 3-dimethyl-4-methyleneithiazolidine and 2-(p-tolyldiazenyl)-1H-imidazole</td>
<td>C${11}$H${10}$N${4}$O${4}$</td>
<td>214.23</td>
<td>170-172</td>
<td>Light orange powder</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methylimidazolidin-4-one</td>
<td>C${24}$H${19}$N$_{7}$</td>
<td>405.47</td>
<td>177-178</td>
<td>Dark orange powder</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methylimidazolidin-4-one</td>
<td>C${26}$H${21}$N${7}$O${2}$</td>
<td>490.13</td>
<td>180-182</td>
<td>Dark orange powder</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2,5-dimethylimidazolidin-4-one</td>
<td>C${26}$H${21}$N${7}$O${2}$</td>
<td>489.13</td>
<td>128-135</td>
<td>Powder yellow dark</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-5-((1H-indol-3-yl)methyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methylimidazolidin-4-one</td>
<td>C${24}$H${21}$N${9}$O${2}$</td>
<td>481.13</td>
<td>190-200</td>
<td>Light brown powder</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>2-(4-((1H-imidazol-2-yl)diazanyl)phenyl)-3-(4-hydroxy-6-methylpyrimidin-2-yl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one</td>
<td>C${24}$H${20}$N${6}$O${2}$S</td>
<td>456.52</td>
<td>220-225</td>
<td>Brown powder</td>
<td>83</td>
</tr>
</tbody>
</table>

Figure 20: Shows the antibiotic effect on *E. coli*

Figure 21: Shows the effect of prepared compounds (1-9) on *Strepto Coccus*
bacteria Staphylococcus aureus and Escherichia coli, the compounds that appeared good activity are (1, 2, 3, 6, 7, 8) against (staphylococcus aurous) on the other hand, compounds (1, 2, 3, 4, 5, 6, 7) show good activity against (Escherichia coli), the results of the antibacterial activity are shown in

REFERENCE