A Novel Validated Gas Chromatography Headspace (GC-HS) Method for the Simultaneous Quantification of Six Organic Volatile Impurities in Biperiden HCL Pure and Pharmaceutical Dosage Forms

Krishna K. Jyothi, Prasada R. Kammela*, Mohan Seelam

Department of Chemistry, Bapatla Engineering College, Guntur, Andhra Pradesh, India

Received: 26nd September, 2021; Revised: 18th October, 2021; Accepted: 21st November, 2021; Available Online: 25th December, 2021

ABSTRACT

A novel, simple, and sensitive Gas Chromatography Headspace method for simultaneous quantification of six organic-volatile impurities in Biperiden HCL API and its pharmaceutical dosage forms using ZB-624 30 m \times 0.53 mm, 3.0 μ column with Flame Ionized detector at 250°C. The Injector temperature is maintained at 225°C. The nitrogen gas was used as a carrier gas with a 3.0 mL/min flow rate. The method involved a thermal gradient elution. The total run time is 25.0 minutes. The method was linear over the concentration range of the limit of quantification to 150% of each impurity. The limit of quantification was found 57 ppm for Methanol, 107 ppm for Isopropyl alcohol, 143 ppm for Di-isopropyl ether, 19.5 ppm for Tetrahydrofuran, 0.1 ppm for Benzene, and 14.6 ppm for 1,4-Dioxane. The calculated recoveries were obtained should be 85-115%.

Furthermore, verified precision, ruggedness, robustness, Solution stability, and pharmaceutical analysis were done. All the results are found within acceptable limits. The suggested GC-HS method can quantify six organic-volatile impurities in Biperiden HCl API and its pharmaceutical dosage forms.

Keywords: 1,4-Dioxane, Benzene, Biperiden HClAPI, Di-isopropyl ether, Isopropyl alcohol, Methanol, Method development and Validation, Tetrahydrofuran.

International Journal of Pharmaceutical Quality Assurance (2021); DOI: 10.25258/ijpqa.12.4.15

How to cite this article: Kishore JK, Rao KP, Mohan S. A Novel Validated Gas Chromatography Headspace (GC-HS) Method for the Simultaneous Quantification of Six Organic Volatile Impurities in Biperiden HCL Pure and Pharmaceutical Dosage Forms. International Journal of Pharmaceutical Quality Assurance. 2021;12(4):309-315.

Source of support: Nil.

Conflict of interest: None

INTRODUCTION

Biperiden hydrochloride [Figure 1] is chemically known as (1RS)-1- [(1RS,2SR,4RS)-Bicyclo [2.2.1] hept-5-en-2yl]-1-[phenyl-3-(piperidin-1-yl) propan-1-ol hydrochloride. Chemical formula is C₂₁H₃₀ClNO and Molecular weight is 347.9 gr/mole.¹ And it is an anticholinergic drug. The Organic volatile impurities (OVI'S) are used in produced during the synthesis of Biperiden HCl drug substances and in excipients used in the production of drug formulations. Many of these OVI generally can't be completely removed by standard manufacturing processes, preferably at low levels. These organic-volatile impurities are encounter during the manufacture and storage of active pharmaceutical ingredients. The OVI'S in the active pharmaceutical ingredients or from other drugs manufacturing processes can be harmful for human health.²⁻⁴ The first problem facing the simultaneous quantification of these organic volatile impurities analysis of Biperiden HCl in quality control was the inability of the present official methods.5

The organic volatile impurities specifications were set following the toxicity of solvents vary from a low ppm to thousands of ppm. Generally, organic-volatile impurities are divided into three classes. Those are class-1, class-2 and class-3. So in the process of Biperiden HCl drug methanol (class-3), isopropyl alcohol (class-3), Di-isopropyl ether (class-3), tetrahydrofuran (Class-2), benzene (Class-1), and 1,4-Dioxane(Class-2) were used as organic-volatile impurities. After the drying process, the analysis needs to be performed to check if the amounts of solvents used at any step of the production do not

Figure 1: Chemical Structure of Biperiden HCl

exceed acceptable limits. The static GC-HS quantification of OVI'S is now a day's mature technique well established in pharmaceutical analysis.⁶ So we aim to simultaneously quantify these six organic volatile impurities in a single method by using GC-HS with the flame ionized detector. The specifications of the six organic volatile impurities are 3000 ppm for Methanol, 5000 ppm for Isopropyl alcohol, 5000 ppm for Di-isopropyl ether 500 ppm for Tetrahydrofuran, 2.0 ppm for Benzene, and 300 ppm for 1,4-Dioxane. The structures of six organic-volatile impurities are shown in Figure 2.

In the literature review, very few reports are present on Biperiden HCl. Some stability-indicating methods and Assay methods are available. Mohammadi *et al.* reported as Development and Validation of a Stability-Indicating High-Performance Liquid Chromatographic (HPLC) assay for Biperiden in Bulk Form and Pharmaceutical Dosage Forms.⁷ We hope our method is novel and very sensitive from this literature survey.

To the best of our knowledge, there are no reports on the validated simultaneous quantification of six organic-volatile impurities in the Biperiden HCl pure and pharmaceutical substances by using GC-HS with the flame ionized detector.

MATERIALS AND METHODS

Chemicals and Reagents

Methanol, Isopropyl alcohol, Di-isopropyl ether, Tetrahydrofuran, Benzene, 1,4-Dioxane, and Dimethyl sulfoxide were purchased from Sigma-Aldrich. Biperiden HCl API is taken from a local well-known research Laboratory. Dimethyl sulfoxide is used as a diluent and blank.

Instrumentation and Chromatographic Conditions

Chromatography was performed on Shimadzu chromatographic system equipped with a Shimadzu GC-2010 system with FID. Samples were injected through a Teledyne tekmar HT3TM Headspace. Data acquisition and integration were performed using GC solution software. The instrument parameters described below were set up to determine the Organic volatile impurities. The GC and HS method conditions are summarized in Table 1.

Preparation of Standard Solutions

Benzene Standard Stock Solution

Weigh and transfer about 500 mg of Benzene into 100 mL of the volumetric flask containing 70 mL of diluent and diluted to volume with diluent. Further taken 1.0 mL of above solution

into 100 mL of volumetric flask and diluted to volume with diluent.

Standard Solution Preparation

Weighed and transferred about each 750 mg of Methanol, 1250 mg of Isopropyl alcohol, 1250 mg of Di-isopropyl ether, 125 mg of Tetrahydrofuran, and 75 mg of 1,4-Dioxane into a 100 mL of the volumetric flask containing 70 mL of diluent and diluted to volume with diluent. Further taken 5.0 mL of the above solution and 0.5 mL of Benzene stock solution into 50 mL of volumetric flask and diluted to volume with diluent.

The standard Headspace vials were prepared with 2 mL of the Standard solution and seal the vial with aluminum closure. (The standard solution concentration was prepared concerning Sample concentration).

Preparation of Biperiden HCl Sample Solution (250 mg/mL) Accurately weighed about 500 mg of Biperiden HCl API into a 10 mL Head Space vial, added 2.0 mL of diluent, and immediately sealed with aluminum closure.

Preparation of Biperiden HCl Tablet Solution

Twenty tablets were weighed and powdered. An amount of powder equivalent to 500 mg Biperiden HCl was accurately weighed and transferred to a headspace vial, add 2 mL of diluent, and immediately sealed with aluminum closure.

RESULTS AND DISCUSSION

Method Optimization

The GC-HS method has been developed based on GC-HS chromatographic conditions. The column screening has been done for better peak resolution between six organic-volatile impurities. After selecting the column, fine-tune the method to change the Injection, Detector temperatures, and Oven program. The oven program tuning is beneficial to reduce the total run time with good resolution. The GC method optimization details are shown in Table-2.

Table 1: GC and HS method conditions

Column	ZB-624 (30 m \times 0.53 mm, 3.0 μ)				
Flow	3.0 mL/min				
Injector temperature(°C)	220°C				
Detector temperature(°C)	260°C				
Split ratio	20:1				
GC Oven program	Ramp(°C/min) Temperature (°C) Hold time (min) 40 5 20°C/min 200 12				
Total Run time (min)	25.0 min				
Carrier Gas	N ₂				
HS-Vail temperature(°C)	90°C				
HS-Oven temperature(°C)	100°C				
HS-Transfer line temperature(°C)	110°C				
HS-Vail equilibration time (min)	30 min				
HS-Injection volume	1 mL				
HS-Injection time (min)	1 min				

From Table 2 method optimized data we have to observe, ZB-624 (30 m × 0.53 mm, 3.0 μ) the column gives better results than the remaining two columns as per USP specifications. So based on the above data we have selected ZB-624 (30 m × 0.53 mm, 3.0 μ) to quantify six organic-volatile impurities in Biperiden HCl API and its pharmaceutical dosage forms.

Headspace Method Optimization

The headspace method was optimized so that the maximum amount of the organic-volatile impurities present in the Biperiden HCl API gets evaporated for detection. For this, the standard and sample vials were heated at 70°C to 100°C for 15 to 30 min with constant shaking. A combination of sample vial heating at 90°C with 30 min shaking was suitable for getting a good response.

Method Validation

The GC-HS method validation was as per ICH guidelines.8

Specificity

The relative retention time of the six OVI's indicated that they were well separated from each other [Table 3]. The typical chromatograms of six organic-volatile impurities and Biperiden HCl are shown in Figure 3.

System Precision and Method Precision

System Precision was evaluated by injecting six replicates, and method Precision was evaluated by preparing the six different preparations of standard solution into the Chromatographic system as per the test method. The %RSD was calculated for the area of six OVI's. The %RSD of each Impurity is NMT 10.0%. Results are shown in Tables 4 and 5.

Linearity for Limit of Detection (LOD) and Limit of Quantification (LOQ)

The LOD and LOQ for the proposed method were determined using calibration standards and calculated using 3.3σ /s and 10σ /s formulae, respectively. The data and typical chromatograms are shown in Table 6 and Figure 4.

Linearity

The linearity of the method was determined over the concentration range of LOQ %, 50% 75% 100%, 125%, and 150%. The LOQ values are 1.90% for Methanol, 2.14% for IPA, 2.86% for Di-isopropyl ether, 3.90% for THF, 3.05% for Benzene and 4.85% for 1,4-Dioxane.The correlation coefficient

Figure 3: Typical chromatograms of Six OVI'S Standard and Biperiden HCl API

Table 2: GC-Method optimization details							
Name of	the column	USP Resolution	USP Tailing factor	USP Plate count			
DB-1 (30	DB-1 (30 m \times 0.53 mm, 1.5 μ) Between 2.0 to 5.0 Most of the impurities are above 1.5 Plate courses (Between		5 Plate count is goo (Between 2000 to	d for all impurities 30000)			
ZB-624 (30 m \times 0.53 mm, 3.0 $\mu)$		Between 5.0 to 20.0	All six impurities are below 1.5	Plate count is goo (Between 2000 to	d for all impurities 150000)		
ZB-Wax (30 m \times 0.32 mm, 1.8 $\mu)$		Between 3.0 to 8.0	Some impurities are above 2.0 andPlate courseThree impurities are below 1.5.(Between		ate count is good for all impurities Between 2000 to 50000)		
Table 3: Specificity data for six organic-volatile impurities							
S.No.	Name of OVI'S	Retention time (min)	Theoretical Plates	Tailing Factor	USP Resolution		
1	Methanol	3.57	30139	1.28			
2	Isopropyl alcohol	5.84	26998	1.09	20.05		
3	Di isopropyl ether	7.37	32863	1.01	10.07		
4	Tetrahydrofuran	8.49	81429	1.07	7.92		
5	Benzene	9.19	94064	1.07	6.02		
6	1,4-Dioxane	10.29	147447	1.09	9.95		

Table 4: System Precision data for six organic volatile impurities							
No.of Injections	Methanol	Isopropyl alcohol	Di isopropyl ether	Tetra hydro furan	Benzene	1,4-Dioxane	
1	369749	701586	12772550	207911	2214	23615	
2	386897	745421	13129371	220334	2423	24253	
3	385403	746081	12993170	213152	2214	23100	
4	395539	796404	12855053	208834	2321	23336	
5	369889	705647	12834163	209901	2215	24808	
6	366751	702931	12732378	205160	2102	24575	
ACVG	379038	733012	12886114	210882	2248	23948	
STDV	11794	37375	148883	5314	110	697	
% RSD	3.11	5.10	1.16	2.52	4.90	2.91	

Table 5: Method Precision data for six organic volatile impurities	
--	--

No.of Injections	Methanol	Isopropyl alcohol	Di isopropyl ether	Tetra Hydro furan	Benzene	1,4-Dioxane
1	350489	813813	12123543	216994	2225	23240
2	353970	815143	12204228	218798	2125	23390
3	336354	787640	12263998	216893	2066	22638
4	362012	854437	12052005	221205	2210	24265
5	373189	894055	12099833	212622	2120	24407
6	346263	822840	12008420	217101	2328	23233
ACVG	353713	831321	12125338	217269	2179	23529
STDV	12771	37465	95028	2817	94	678
% RSD	3.61	4.51	0.78	1.30	4.33	2.88

Table 6: LOD and LOQ data for six Organic volatile impurities

OVI'S	LOD Con.(ppm)	LOQ Con.(ppm)	LOD Area	LOQ Area
Methanol	18.9	57	2077	5363
Isopropyl alcohol	35.5	107	5577	17384
Di isopropyl ether	47	143	102279	321707
Tetrahydrofuran	6.5	19.5	2981	8792
Benzene	0.02	0.1	25	69
1,4-Dioxane	4.8	14.6	476	1529

Figure 4: (a) LOQ and (b) LOD Chromatogram of Six OVI'S

 (r^2) of each impurity is not less than 0.99. The linearity data and graphs is shown in Table 7 and Figure 5.

LOQ-Precision

To inject the six repeated injections of six organic-volatile impurities at LOQ concentration into the GC system. Then calculate the % relative standard deviation for six OVI's area. The %RSD has obtained not more than 15.0%. Results are summarized in Table 8.

Recovery

The %recovery was evaluated at 50%, 100%, 150% and LOQ% concentrations of six organic-volatile impurities are spiked with Biperiden HCl API. The acceptance criterion for accuracy was that it should be within $100 \pm 15\%$. The results are indicated in Table 9.

Ruggedness and Robustness

The ruggedness of the method was evaluated by injecting the standard organic volatile impurities in six replicates with different analysts on different days. Robustness is performed by making small variations in the GC or HS method parameters.

Simultanious quantification of organic volatile impurities in Biperiden HCl by GC-HS method

Table 7: Linearity data with LOQ								
Con.(%)	Methanol	Isopropyl alcohol	Di isopropyl ether	Tetra hydro furan	Benzene	1,4-Dioxane		
LOQ Con.	5363	17384	321707	8792	69	1529		
50	168286	341708	5981565	107185	1075	11428		
75	256745	525025	8743768	161083	1666	17234		
100	340445	695903	12817801	218480	2298	22630		
125	402263	815893	14844431	267992	2774	26599		
150	519833	1068870	18593710	330280	3493	33984		
r2	0.998	0.997	0.998	1.000	0.999	0.998		

Figure 5: Correlation graphs of six OVI'S

			Table 8:	LOQ-Precision da	ta				
No. of Injection	ns Methanol	Isopropyl alco	hol D	i isopropyl ether	Tetra h	ydro furan	Benzene		1,4-Dioxane
Run-1	5363	17384	32	21707	8792		71		1529
Run-2	5391	16445	32	21260	8832		69		1306
Run-3	5483	17951	32	28209	8951		68		1517
Run-4	5358	17868	32	24103	8788		75		1419
Run-5	5147	15749	32	20954	8453		79		1309
Run-6	5068	16620	32	28390	8950		62		1369
ACVG	5302	17003	32	24104	8794		71		1408
STDV	159	874	34	434	183		5.9		98
%RSD	3.00	5.14	1.	.06	2.08		8.33		6.98
		Table 9: R	Recovery data	a for six organic-vo	olatile im	purities			
No of OVI'S		Recovery at 50	9%	Recovery at 100%	ó	Recovery at	150%	Recover	y at LOQ%
Methanol		88.11		89.52		89.83		98.39	
Isopropyl alcoh	ıol	105.07		103.26		102.27		95.18	
Di isopropyl et	her	90.37		94.85		91.3		96.1	
Tetrahydrofura	n	100.82		104.69		103.12		99.97	
Benzene		96.53		102.8	94.37		102.35		
1,4-Dioxane		96.98	96.98 97.4		95.67 1		101.47	101.47	
		Table 10: Ri	uggedness d	ata for six Organic	volatile i	mnurities			
		%RSD for	%RSD fo	$r \qquad \% RSD for D$)i	%RSD for	%RSD i	for	%RSD for
Different Days	and Analysts	Methanol	IPA	isopropyl eth	her	THF	Benzene	2	1,4-Dioxane
	Analyst-1 (n=6)	3.90	4.94	1.16		1.40	1.74		3.35
Dav-1	Analyst-2 (n=6)	2.69	2.51	1.02		1.00	1.27		2.27
2491	Analyst-1 & 2 (n=12)	3.20	3.75	1.73		1.36	1.52		2.73
	Analyst-1 (n=6)	4.63	5.45	1.31		1.58	2.10		3.99
Dav-2	Analyst-2 (n=6)	2.62	2.21	1.44		1.52	2.36		2.47
Duj 2	Analyst-1 & 2 (n=12)	3.97	4.66	4.81		1.83	2.16		3.87
Analyst-1	Day-1&2 (n=12) 5.35	4.96	2.18		1.47	1.84		3.71
Analyst-2	Day-1&2 (n=12) 5.81	3.62	4.34		2.46	1.81		2.53
		Table 11: R	obustness da	ta for six Organic	volatile in	npurities			
	F	low rate (mL/min)				Vial Con	d. Temperat	ure (°C)	
Name of OVI'S	2.	8 mL/min (%RSD)	3.	2 mL/min (%RSD)		75°C (%	RSD)	85°C	(%RSD)
Methanol	6.	55	4.	75		3.03		5.48	
Isopropyl alcoh	nol 7.	46	6.	32		3.35		6.37	
Di isopropyl et	her 0.	73	1.	11		1.34		2.00	
Tetrahydrofura	n 1.	51	3.	76		1.52		3.01	
Benzene	1.	82	2.	03		2.25		2.08	

The changed parameters are Column flow and Vial condition temperature. The % RSD for six organic-volatile impurities are not more than 10.0%. The results are summarized as shown in Table 10 and Table 11.

6.18

Pharmaceutical Application

1,4-Dioxane

The prepared Biperiden HCl tablet solution (250 mg/mL) was injected. The six organic volatile impurities content in

Biperiden HCl tablets were found within the specified limits. The results are shown in Table 12.

5.12

3.10

Solution Stability

The six organic volatile impurities standard and Biperiden HCl API sample solutions were prepared in Dimethyl sulfoxide as a diluent. So we have to check whether these standard and sample solutions are stable or not. To prepare the standard and

6.13

Simultanious	uantification of	forganic	volatile imi	ourities in	Rinoridon	HClb	CC-HS	method
Simultamous q	fuantine auton 0	i organne v	voiaule iiii	Juines III	Diperiuen	TICLUY	00-115	memou

	Т	able 12: Six organic	volatile im	purities content i	in tablet analysi	S	
Name of API	API Label claim (mg)	Methanol (ppm)	IPA (ppm)	DIPA (ppm)	THF (ppm)	Benzene (ppm)	1,4-Dioxane (ppm)
Biperiden HCl	2	Not detected	75	Not detected	Not detected	Not detected	Not detected
Table 13: Solution	on stability data for Six C	VI'S and Biperiden	HCl API	for up to 36	hours. The	corresponding	data is presented in
Methanol	% Solution stabil for standard	lity % Solution s for API	tability	Table 13.	ION		
Initial hours	Not applicable	Not detected					.1 . 1.
After 12 h	97.13	Not detected		This is the	novel GC-F	IS method for	the simultaneous
After 24 h	96.45	Not detected		Isopropyl a	lcohol Di-is	s in Diperident	Tetrahydrofuran
After 36 h	93.19	Not detected		Benzene, and	d 1,4-Dioxane	e were well sepa	rated and quantified
Isopropyl alcoho	% Solution stabil for standard	lity % Solution st for API	tability	by the proper validation pa	osed method. Trameter as po	Good results a er ICH guidelin	re obtained in each es. We reported that
Initial hours	Not applicable	Not applicab	le	the LOD and	LOQ value	was very low fr	om this method. We
After 12 h	97.79	98		have to prov	ve that this C	GC-HS method	is also suitable for
After 24 h	95.98	98.71		quantifying	organic-vola	tile impurities	in pharmaceutical
After 36 h	94.18	95.26		dosage form	ns. The pro	posed method	was validated as
Di isopropyl ethe	% Solution stabil er for standard	lity % Solution st for API	tability	method was	scientific. Tl	and the result nis investigation	n may be helpful to
Initial hours	Not applicable	Not detected		organic-vola	tile impuritie	s And this met	hinimization of the
After 12 h	97.61	Not detected		applicable for	or the routine	analysis of the	Biperiden HCl API
After 24 h	96.63	Not detected		in the pharm	aceutical ind	ustry.	
After 36 h	95.78	Not detected			FDCEME	NT	
Tetrahydrofuran	% Solution stabil for standard	lity % Solution st for API	tability	Dr. K. Prasac	la Rao superv	vised the manus	cript preparation and
Initial hours	Not applicable	Not detected		reviewed the	e manuscript.	I want to than	k the whole staff of
After 12 h	97.48	Not detected		the Chemistr	y department	t of Bapatla Eng	ineering College for
After 24 h	97.01	Not detected		then technic	ai support all	a productive di	scussions.
After 36 h	94.71	Not detected		REFEREN	CES		
Benzene	% Solution stabil for standard	lity % Solution st for API	tability	1. Dmorcill Chromato	lo Y, Cai Y graphy.1995; 1	and Bayona JM 8, 776.	A. High Resolution
Initial hours	Not applicable	Not detected		2. ICH Harm	ionized Tripart	ite Guidelines for	Residual Solvents.1997
After 12 h	95.99	Not detected		3. Fliszar k	K. Markwigg	ins J and Pign	oli CM. Journal of
After 24 h	93.06	Not detected		Chromato	graphy.2004;	1027, 83.	
After 36 h	92.17	Not detected		4. Malleswa	ra Rao et al.	Formulation Dev	elopment and Invitro
1,4-Dioxane	% Solution stabil for standard	lity % Solution st for API	tability	Evaluatio Cyclodext	n of Immedia trin Complexe	s. International J	ournal of Research in
Initial hours	Not applicable	Not detected		5. Bonadio F	Margot P. Del	émont O and Esse	$\frac{2}{10}$: $\frac{15}{-10}$ - $\frac{10}{-10}$.
After 12 h	96.54	Not detected		Internatio	onal.2009; 18	7, 73. Available	from: doi: 10.1016/j.
After 24 h	93.58	Not detected		forsciint.2	2009.03.004		
After 36 h	92.97	Not detected		6. Barro R, I	Regueiro J, Llo	mpart Mand Gar	cia-Jares C, Journal of

sample solutions for four-time intervals (Initial hours, after 12 hours, after 24 hours and after 36 hours) on the first day and kept at room temperature. These solutions are injected at Initial hours, after 12 hours, after 24 hours, and after 36 hours, then calculated the % of solution stability for the area at each time interval. We got a % of solution stability is 100 \pm 10%. Based on these data, six organic volatile impurities standards and Biperiden HCl API solutions were stable

Chromatography. 2009; 1216, 540.
7. Ali Mohammadi , Ali Mehramizi, Firooze Moghaddam, Leily Erfani. Development and Validation of a Stability-Indicating High Performance Liquid Chromatographic (HPLC) Assay for Biperiden in Bulk Form and Pharmaceutical Dosage Forms. Journal of Chromatography, B Analytical Technologies in Biomedical and Life Sciences. 2007; 854 (1-2):152-7. Available from: DOI:10.1016/j.jchromb.2007.04.016

8. ICH Harmonized Tripartite Guidelines for Residual Solvents.1997 Step 4.