RESEARCH ARTICLE

Method Development and Validation for the Determination of Sotorasib by LC-MS/MS Technique

Phani K Sunkara, Sreedhara Chaganty, K Ramakrishna

Department of Chemistry, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.

Received: 20th August, 2023; Revised: 14th September, 2023; Accepted: 09th October, 2023; Available Online: 25th December, 2023

ABSTRACT

The main aim of the research work is to develop and validate a linear, precise and specific LC-ESI-MS/MS method for the quantification of sotorasib. Chromatographic resolution was achieved with ODS Zorbax (50 × 4.6 mm, 2.1 µ) C18 column and a mobile phase composition of methanol, 0.1% formic acid and ACN in the proportion of 50:15:35 with 0.5 mL/min flow of the mobile solvent system from the stationary column procedure was executed by monitoring the established ionic transitions of m/z: 561.09/316.84 for sotorasib and 478.09/451.08 for apalutamide internal standard in multiple reaction monitoring. The linear plot regression line was y = 0.0001x + 0.0011, with a correlation coefficient (r²) of 0.9996. The %CV outcomes for matrix effect at low-QC and High-QC levels were 2.90 and 3.41%, respectively. The percentage average recoveries for sotorasib in high-QC (11.25 µg/mL), MQC (7.50 µg/mL) and low-QC (1.05 µg/mL) were 102.41, 98.07, and 102.41%, respectively. The obtained values were between 2.00 and 4.03% for the QC (0.375, 1.05, 7.50 and 11.25 µg/mL). The established technique was subjected for validation as per the food and drug administration (FDA) guiding principles and can be useful for the evaluation of sotorasib in biological samples in quality control, forensic and bioavailability studies.

Keywords: Sotorasib, Lung cancer, Liquid chromatography tandem mass spectrometry, Validation, Accuracy.

Source of support: Nil.

Conflict of interest: None

INTRODUCTION

Sotorasib, IUPAC name is represented as 6-fluoro-7-(2-fluoro-6-hydroxy phenyl)-(1 M)-1-[4-methyl -2-(propan -2-yl) pyridine -3-yl] -4-
[2-(S)-2- methyl -4-(prop-2-enoyl) piperazin-1-yl] pyrido [2,3-d] pyrimidin-2(1H)-one with empirical formula of C30H30F2N6O3 (Figure 1). Sotorasib is approved for treating people who have previously been treated with at least one other systemic therapy for KRAS G12C-mutated locally metastatic or advanced non-small cell lung cancer (NSCLC). In a normal state, GTP will bind to KRAS and cause the protein to become active. This will also promote the effectors that are involved in the MAP kinase pathway. GDP is produced from GTP by hydrolysis, which inactivates KRAS. The presence of KRAS G12C mutations inhibits the hydrolysis of GTP, hence preserving its active state.1,2

The anti-cancer medicine sotorasib, marketed under the brand names Lumakras and Lynmyras, is typically taken by patients diagnosed with NSCLC. It zeroes down on a particular mutation, known as G12C, in the protein K-Ras, which is encoded by the KRAS gene and is the driving force behind many types of cancer. The protein is kept inactive by sotorasib’s ability to bind to the cysteine residue present in KRAS G12C mutations. Because the cysteine residue that sotorasib targets is not present in the wild type of KRAS, any off-target effects caused by the drug are eliminated. This mutation may be found in 13% of patients with non-small cell lung cancer, 3% of patients with colorectal cancer and appendix cancer, and 1 to 3% of patients with solid tumors.3,4

Literature survey on sotorasib drug reveals that HPLC5,6 and LC-MS/MS7-9 quantification methods for the analysis of sotorasib was reported. So, an LC-ESI-MS/MS analytical method is needed to estimate sotorasib with less retention time in the biological matrix.

MATERIALS AND METHODS

Reagent Chemicals

Sotorasib and apalutamide (IS) were gift samples from Glenmark, Mumbai, India. LC grade ACN (acetonitrile) and methyl alcohol were acquired from J. T. Bakers, Hyderabad. Water was utilized for total research work from water purification (Milli Q) systems. Formic acid of analytical grade was obtained from Merk Pvt. Ltd., Mumbai, India.

Equipment

The Applied Biosystem Sciex-API-4000 Tandem mass spectrometer was combined with an auto-sampler

*Author for Correspondence: karipeddirk@gmail.com
Development and Validation of Sotorasib LC-MS/MS Method

Figure 1: Sotorasib chemical structure

equipped Shimadzu LC20ADvp (Shimadzu, Japan) liquid chromatographic system. The solvent pump is a Japanese-made Shimadzu LC20AD module. Analyst software (version 1.4.2: Applied Biosystems) was used to combine all of the chromatographic results.

Quality and Calibration Standard Solution Preparation

A 100 µg/mL of sotorasib and apalutamide (IS) stock solutions were processed by solubilizing in the calculated quantity of mobile phase. Standard and quality control standards were processed with blank plasma sample from the standard stock solution of sotorasib. Eight linear standard levels of different concentrations were processed by spikes of the blank plasma with sotorasib standard solution create eight calibration standards at concentrations of 0.375, 0.600, 1.050, 1.900, 4.000, 7.000, 11.000 and 15.000 µg/mL. Low (Low-QC), median (Median-QC) and high (High-QC) standards were quality control (QC) samples, processed by spiking blank plasma with sotorasib to make solutions of 1.050, 7.500 and 11.250 µg/mL, respectively. From apalutamide stock solution of 500 ng/mL its working solution was processed with 70% acetonitrile. Processed samples were kept at 20°C up to the assessment of the chromatographic results.

Protocol for Sample Preparation

To 250 µL of plasma (spiked with sotorasib to required concentration), 100 µL of apalutamide (1-µg/mL) were mixed in order to precipitate the proteins from the sample, 4 mL of methanol was added to it, and then it was centrifuged at 5000 rpm for 15 to 20 minutes while it was kept at 5°C. The lyophilizer was used to dry out the organic component. After adding 250 µL of movable solvent to the residue, sufficient samples were transferred into labeled Autosampler vials and then injected into an LC-MSMS system.

Validation

The linearity, accuracy, lower limit of quantification (LLoQ), range, recovery, selectivity, precision, and matrix effect of the quantitative determination of sotorasib in plasma were tested in accordance with the guidelines for bio-analytical technique validation in pharmaceutical development. This was done in order to validate the quantifiable assessment of sotorasib in plasma.

RESULT AND DISCUSSION

The chromatograms produced throughout the validation procedure passed the assessment and the blank, blank + IS, and LLoQ chromatograms resulted in Figures 2 and 3, respectively.

Specificity

A 375 ng/mL sample was injected into the LC-MS/MS system under optimal LC conditions to separate sotorasib from plasma contaminants and endogenous components. By measuring plasma noise, technique specificity was assessed. Interference peak area should be < 20% of LLoQ peak area and < 5% of mean IS peak area(Figure 2). The LLoQ concentration should not fluctuate more than 20% from nominal concentration (NC).

Linear Plot

Calibration plot of the analytical technique was processed by constructing the standard plot between concentration values and peak response fractions of sotorasib to IS. Calibration standards ranging from 0.375 to 15.0 µg/mL (Figure 4). The linearity curve regression equation was $y = 0.0001x + 0.0011$, with the linear curve findings shown in Table 1.

<table>
<thead>
<tr>
<th>LS-ID</th>
<th>Concentration (ng/mL)</th>
<th>Average response</th>
<th>IS response</th>
<th>Analyte/IS response</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS-1</td>
<td>375</td>
<td>4804</td>
<td>123864</td>
<td>0.038784</td>
</tr>
<tr>
<td>LS-2</td>
<td>600</td>
<td>7758</td>
<td>124012</td>
<td>0.062558</td>
</tr>
<tr>
<td>LS-3</td>
<td>1050</td>
<td>13023</td>
<td>122954</td>
<td>0.105918</td>
</tr>
<tr>
<td>LS-4</td>
<td>1900</td>
<td>26828</td>
<td>123957</td>
<td>0.21643</td>
</tr>
<tr>
<td>LS-5</td>
<td>4000</td>
<td>53867</td>
<td>123367</td>
<td>0.43664</td>
</tr>
<tr>
<td>LS-6</td>
<td>7000</td>
<td>89937</td>
<td>123158</td>
<td>0.730257</td>
</tr>
<tr>
<td>LS-7</td>
<td>11000</td>
<td>142657</td>
<td>123995</td>
<td>1.150506</td>
</tr>
<tr>
<td>LS-8</td>
<td>15000</td>
<td>196974</td>
<td>123002</td>
<td>1.601389</td>
</tr>
</tbody>
</table>

CS: Calibration standard.
Inter and Intraday Precisions

Accuracy and precision were determined in the form of inter and intraday. Five replicates per day were infused with the QC standards (1.05, 7.50 and 11.25 µg/mL) and LLoQC (375 ng/mL) to determine the intraday precisions and accuracies. On 5 separate days, we analyzed our quality control standards (1.05, 7.50 and 11.25 µg/mL) and LLoQC (375 ng/mL) to determine our inter-day precision and accuracy. Except for LLoQ QC, where it should not exceed 20%, the within- and between-batch %CV values for high, medium, and low concentrations should be under 15%. The analytical method’s intraday and interday precision was assessed by looking at the %CV figures. The results for the quality control samples ranged from 2.00 to 4.03%. There was no significant variation between any of the results (15%). Table 2 displays the tabulated findings.

Extraction Recoveries

Peak areas of extracted samples of sotorasib were compared to those of sotorasib at a control concentration for tests of recovery. The %average recovery outcomes for sotorasib in high-QC (11.25 µg/mL), MQC (7.50 µg/mL) and low-QC (1.05 µg/mL) were 102.41, 98.07 and 102.41, respectively (Table 3 and Figure 5).

Effect of Matrix Constituents

Three duplicates of six blank plasma samples from six distinct groups were taken, spiked at low-QC and high-QC levels, and then compared with the same amounts in the other treatments. Low-QC samples had a CV% of 2.90 and High-QC samples had a CV% of 3.41, both of which are within 15% of the

Table 2: Sotorasib Intra and interday precision data

<table>
<thead>
<tr>
<th>QC</th>
<th>Sotorasib (µg/mL)</th>
<th>Intra batch</th>
<th>Inter batch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>SD</td>
<td>%CV</td>
</tr>
<tr>
<td>LLoQ</td>
<td>367</td>
<td>14.82</td>
<td>4.038</td>
</tr>
<tr>
<td>Low-QC</td>
<td>1017</td>
<td>24.74</td>
<td>2.432</td>
</tr>
<tr>
<td>Median-QC</td>
<td>7721</td>
<td>298.31</td>
<td>3.863</td>
</tr>
<tr>
<td>High-QC</td>
<td>11364</td>
<td>395.74</td>
<td>3.482</td>
</tr>
<tr>
<td>LLoQ</td>
<td>384</td>
<td>13.52</td>
<td>3.520</td>
</tr>
<tr>
<td>Low-QC</td>
<td>1065</td>
<td>21.37</td>
<td>2.006</td>
</tr>
<tr>
<td>Median-QC</td>
<td>7745</td>
<td>285.94</td>
<td>3.691</td>
</tr>
<tr>
<td>High-QC</td>
<td>10914</td>
<td>401.84</td>
<td>3.681</td>
</tr>
<tr>
<td>LLoQ</td>
<td>361</td>
<td>12.85</td>
<td>3.559</td>
</tr>
<tr>
<td>Low-QC</td>
<td>1069</td>
<td>22.65</td>
<td>2.118</td>
</tr>
<tr>
<td>Low-QC</td>
<td>7621</td>
<td>278.91</td>
<td>3.659</td>
</tr>
<tr>
<td>Median-QC</td>
<td>11109</td>
<td>411.37</td>
<td>3.703</td>
</tr>
</tbody>
</table>

Table 3: Recovery of sotorasib after extraction

<table>
<thead>
<tr>
<th>Concentrations level</th>
<th>X, mean recoveries of unextracted samples</th>
<th>Y, mean recoveries of extracted samples</th>
<th>%Recovery</th>
<th>%Mean recoveries</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQC</td>
<td>13868</td>
<td>13267</td>
<td>95.67</td>
<td>98.72</td>
<td>2.82</td>
</tr>
<tr>
<td>MQC</td>
<td>99074</td>
<td>97161</td>
<td>98.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQC</td>
<td>148597</td>
<td>152178</td>
<td>102.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>123575</td>
<td>122252</td>
<td>98.93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X, mean recoveries of unextracted samples; Y, mean recoveries of extracted samples.
acceptance standards. The findings of the matrix factors are given in Table 4.

Application of Stability Studies

According to FDA regulations, stability tests were conducted across various environmental conditions. Three freeze/thaw cycles were performed, as well as short-term (at 25°C for 19 hours), long-term (at -70°C for 36 days), post-preparative (10°C for 24 hours), and stock solution stability conditions. Results from stability experiments showed that plasma samples of sotorasib were stable throughout the chromatographic procedure, extraction, and storage under a variety of circumstances. Table 5 displays stability statistics.

Carry-over Effects

A blank sample was estimated using the maximum concentration of the calibration standards in 6 repeats to determine any potential carryover. After the HQC, the peak response of the blank sample should not be more than 20% of the drug response of the LLoQ or higher than 5% of the response of apalutamide. The carryover was acceptable as per the validation guidelines.

CONCLUSION

A linear, precise and specific LC-MSMS technique was developed for the quantification of sotorasib in biological matrices. Chromatographic resolution was achieved with ODS Zorbax (50 × 4.6 mm, 2.1 µ) C18 column and a mobile phase composition of methanol, 0.1% formic acid and ACN in the proportion of 50:15:35 with 0.5 mL/min flow of the mobile solvent system from the stationary column procedure was executed by monitoring the established ionic transitions of m/z- 561.09/316.84 for sotorasib and 478.09/451.08 for apalutamide internal standard in multiple reaction monitoring. The linear plot regression line was y = 0.0001x + 0.0011 and with correction coefficient (r²) of 0.9996. The %CV outcomes for matrix effect at low-QC and high-QC levels were 2.90 and 3.41%, respectively. The percentage average recoveries for sotorasib in high-QC (11.25 µg/mL), MQC (7.50 µg/mL) and low-QC (1.05 µg/mL) were 102.41, 98.07 and 102.41%, respectively. The obtained values were between 2.00 to 4.03% for the QC (0.375, 1.05, 7.50 and 11.25 µg/mL). The established technique was subjected for validation as per the FDA guiding principles and can be useful for evaluation of sotorasib in biological samples in quality control, forensic and bioavailability studies.

REFERENCES

Development and Validation of Sotorasib LC-MS/MS Method

