
INTRODUCTION 
Huntington’s disease (HD) is rare neurological state regarded as 
in chorea, psychological and behavioral symptoms, and cognitive 
decline typically emerging between the ages of 30 and 50 years.1,2 
The global prevalence is estimated between 5.96 to 13.7/100,000.3 
While the precise pathogenic mechanisms behind HD are not 
fully understood, mitochondrial dysfunction, neuroinflammation, 
excitotoxicity, neurochemical imbalances, oxidative stress, and 
apoptosis are recognized as contributing factors.4,5 For many 
years, there was no FDA-approved medication specifically 
for treating chorea in HD. Tetrabenazine is an approved 
drug for HD-associated chorea, following its successful use 
in the TETRA-HD clinical trial.6,7 While tetrabenazine and 
deutetrabenazine are approved by FDA for HD-associated chorea, 
they come with limitations, including potential drug interactions 
and side effects.8,9 This mycotoxin, after being administered 
chronically (at a dosage of 10 mg/kg/day for 3-6 weeks), induces 
HD-like characteristics.10 Depending on the dose and duration, 
this animal model simulates the hyperkinetic and hypokinetic 
indications of HD.11 It leads to cell death through a combination 

of necrosis and apoptosis, mirroring what is observed in the HD 
brain. There is an initial wave of necrotic cell death shortly after 
3-NP administration, followed by slow apoptosis, allowing the 
evaluation of both early and late HD phases.12

Bioflavonoids are a class of natural compounds with diverse 
phenolic structures having anti-inflammatory, antioxidant, 
antiviral, anti-carcinogenic, and anti-allergic potentials.13-15 
Silymarin is a derivative obtained from milk thistle, is a 
flavonolignan with anti-inflammatory, cytoprotective, and 
anticarcinogenic properties. It primarily consists of three 
f lavonolignans: silidianin, silychristine, and silybin.16 
Silymarin inhibits LPS-induced microglial activation, 
reducing the TNF-ɑ and nitric oxide (NO).17 It also protects 
dopaminergic neurons and SNC neurons.18

Quercetin, a type of f lavonol found in various fruits 
and vegetables, has demonstrated the ability to reverse the 
inhibition of the respiratory chain complex caused by 3-NP. 
Longer management through quercetin has shown promise in 
improving motor performance and increasing muscle mass in 
the early stages of aging.19,20

ABSTRACT
This investigation proposes to encapsulate how the combined effects of silymarin, quercetin, and hesperidin impact the 
abilities of rats with Huntington’s disease (HD). Male Wistar rats were administered 3-NP through intraperitoneal injections. 
Various behavioral measures, including muscle grip strength, locomotor activity, and a string test, were assessed. After 
22 days, assessments of lipid peroxidation, glutathione levels, superoxide dismutase, catalase, succinate dehydrogenase 
(Complex II) activity, lactate dehydrogenase (Complex IV) activity, and the determination of interleukin-6 levels was 
performed. Administering 3-NP dosage of 10 mg/kg body weight for 21 days outcomes in a substantial rise in learning and 
memory impairments that closely resembled those seen in HD. Within specific treatment groups, it was observed that quercetin 
significantly enhanced muscle coordination and demonstrated a noteworthy upsurge in various behavioral measures. After 
silymarin, quercetin, and hesperidin were combined, there were significant improvements in key biochemical markers such as 
glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and SDH activity induced by 3-NP. These improvements led 
to a decrease in neuronal damage and apoptosis in brain. Each bioflavonoid successfully reinstated the stages of biochemical 
markers, for example, GSH, SOD, CAT, and SDH, while reducing the activity of malondialdehyde (MDA) and lactate 
dehydrogenase (LDH). However, after these bioflavonoids were combined, their collective impact was more potent Compared 
to what each achieved individually.
Keywords: Bioflavonoids, Cognitive function, Huntington’s disease, Monotherapy, Neurodegenerative disorder.
International Journal of Pharmaceutical Quality Assurance (2023); DOI: 10.25258/ijpqa.14.4.23
How to cite this article: Bhimanwar AA, Nikam AP, Dhamane SP, Barangule SP. Study of the Combined Effect of Silymarin, 
Quercetin, and Hesperidin on 3-nitro Propionic Acid-induced Rat Model of Huntington’s Disease. International Journal of 
Pharmaceutical Quality Assurance. 2023;14(4):959-967.
Source of support: Nil.
Conflict of interest: None

Study of the Combined Effect of Silymarin, Quercetin, and Hesperidin on 
3-nitro Propionic Acid-induced Rat Model of Huntington’s Disease

Arti A Bhimanwar1*, Aarti P Nikam2, S P Dhamane1, S P Barangule1

1*Jayawantrao Sawant College of Pharmacy and Research, Hadapsar, Pune, Maharashtra, India.
2MGV’s SPH College of Pharmacy, Nasik, Maharashtra, India.

Received: 20th September, 2023; Revised: 27th October, 2023; Accepted: 15th November, 2023; Available Online: 25th December, 2023

RESEARCH ARTICLE

*Author for Correspondence: Bhimanwar.arti@gmail.com



Effect of Silymarin, Quercetin, and Hesperidin in HD

IJPQA, Volume 14 Issue 4, October - December 2023 Page 960

Hesperidin, another biof lavonoid derived from citrus 
byproducts, possesses a wide range of pharmacological 
properties and medicinal applications.21 Hesperidin has been 
found to inhibit the elevation of TNF-ɑ, reduce apoptosis, 
and mitigate excitotoxicity.22 Furthermore, hesperidin’s 
ability to decrease malondialdehyde (MDA) levels and 
enhance catalase (CAT) activity through oral administration 
suggests its potential in treating HD, possibly by intervening 
in the microglial path over and done with the inactivation of 
microglial cells.23

This investigation aims to explore the combined effects of 
silymarin, quercetin, and hesperidin in a male wistar rat model 
of HD’s induction through 3-NP, based on the potential positive 
impact of the mentioned bioflavonoids on the condition.

MATERIAL AND METHODS

Materials
Hesperidin, Silymarin, quercetin, and 3-NP were bought from 
Sigma Aldrich, India. ELISA kits used on behalf of assessing 
serotonin and dopamine levels were acquired from Krishgen 
Biosystems in Mumbai, India. A diagnostic kit for measuring 
lactate dehydrogenase (LDH) was obtained from Tulip 
Diagnostics, also based in Mumbai, India. With the exception 
of cases where specific sources are mentioned. 
Animals Used
Male Wistar rats (200–250 gms) were purchased from Crystal 
Biological Solutions, India. These rats were maintained in 
standard laboratory conditions, with the temperature kept at 25 
± 2ºC, RH at 60 ± 5%, and a light-dark cycle of 12 hours each. 
Entirely investigational techniques and protocols underwent 
rigorous scrutiny and received approval from the Institutional 
Animal Ethics Committee (IAEC) at Crystal Biological 
Solutions in Pune. This ethical board operates in compliance 
with the procedures recognized by the CPCSEA, New Delhi.
Preparation of Drugs and Chemicals
Quercetin 50 mg/kg, silymarin 200 mg/kg and hesperidin 
50mg/kg were given oral route towards rats for a duration of 
21 days. These substances were given as a suspension prepared 
in a 0.5% (w/v) carboxymethylcellulose (CMC) utilizing a 
mortar and pestle. Meanwhile, 3-NP (10 mg/kg BW) was 
freshly prepared utilizing normal saline and administered 
via intraperitoneal injection for the same 21-day period. The 
injection of 3-NP took place 90 minutes after test drugs were 
administered and all dosing occurred between 9 am and 11 am.
Experiment Utilizing Animals
Afterward a one-week adaptation period, rats were separated 
into eight different groups, as well as each group underwent a 
21-day treatment regimen as follows:

Group 1: The normal control group was given a 1mL/kg 
intraperitoneal injection of normal saline (NS) and 1-mL/100g 
of 1% carboxymethyl cellulose (CMC) via oral (orally) 
administration. Group 2: The Huntington control group 
was given a 10 mg/kg dosage of 3-NP via I.P. injection and 
1-mL/100g of 0.5% (CMC) via oral administration. 

Group 3 (ST), Group 4 (QT), and Group 5 (HT): These 
groups were treated with silymarin (200 mg/kg, orally), 
quercetin (50 mg/kg, orally), and hesperidin (50 mg/kg, 
orally), correspondingly, while simultaneously receiving 3-NP 
(10 mg/kg) through I.P. injection. 

Group 6: This group was administered a combination of 
silymarin (200 mg/kg, orally), quercetin (50 mg/kg, orally), 
and hesperidin (50 mg/kg, orally). 

Group 7: This group was administered a combination 
of silymarin (200 mg/kg, orally) and quercetin (50 mg/kg, 
orally). Group-8: This group was administered a combination 
of silymarin (200 mg/kg, orally) and hesperidin (50 mg/kg, 
orally) while simultaneously being administered 3-NP 
(10 mg/kg) through I.P. injection.
Evaluation of Behavioral Parameters Muscle Grip 
Strength (Rota Rod Apparatus)
Motor coordination and balances of all the animals were 
evaluated, they underwent testing utilizing the Rota rod 
apparatus. Each rat was positioned on a rotating rod with 7 cm 
diameter, set at a speed of 25 rpm. The average performance 
results were documented as the duration in seconds that each 
rat remained on the rotating rod, with a supreme allowable 
time of 180 seconds.24

Locomotor Activity
Animals were positioned within an actophotometer, wherever 
beams of light interacted with photoelectric cells, and their 
baseline action score was calculated over 5-minute duration. 
This measurement was registered as the count of light beams 
interrupted during their locomotion.25

String Test
This test is employed to check the rodents’ grip strength.26 
The test was conducted following the procedure outlined by 
Shear et al., and the results were conveyed as the duration (in 
seconds) that the rat could maintain its grip on a steel wire.27

Assessment of Biochemical Parameters in Brain Striatum 
Following the conclusion of tasks such as assessing muscle 
grip strength, locomotor activity, and the string test on the 
22nd day, all the rats were humanely euthanized via cervical 
dislocation for subsequent biochemical analysis. The rat’s brain 
was then carefully dissected, and the striatum was isolated, 
identified, and weighed.
Preparation of Brain Homogenate 
A 10% tissue homogenate was organized by utilizing 0.1 M 
phosphate buffer with a pH of 7.4 and 0.1 mM EDTA. The 
solution was centrifuged at 14,000 rpm for 30 minutes at a 
temperature of 4°C. Supernatant fractions obtained were 
separated and used for biochemical analysis.28

Antioxidant parameters

Estimation of lipid peroxidation
A mixture of 2 mL of thiobarbituric acid reaction solution was 
combined with 0.1 mL of a tissue sample, which consisted of 
1-mL of a 10% trichloroacetic acid solution and 1-mL of a 



Effect of Silymarin, Quercetin, and Hesperidin in HD

IJPQA, Volume 14 Issue 4, October - December 2023 Page 961

0.67% TBAR. The resultant blend was then subjected to heat 
in a boiling water bath for 30 min as well as subsequently 
cooled in ice bath for 10 minutes. Subsequently chilling, the 
blend was centrifuged for 10 minutes at 4830 times the force 
of gravity (×g) towards separating the supernatant, which was 
then calculated for absorbance at 532 nm. The outcomes were 
communicated in nanomoles of MDA/gram wet tissue weight.29

Reduced glutathione estimation
Tissue homogenate of equal volumes and 10% trichloroacetic 
acid were combined and subjected to centrifugation for 20 
minutes, leading to the separation of 1-mL of supernatant. The 
remaining liquid, known as the supernatant, was combined 
with 3 mL of 0.2 M phosphate buffer with a pH of 8, along 
with 0.5 mL of a DTNB reagent (0.6 mM in 0.2 M phosphate 
buffer). After thorough mixing, the absorbance was measured 
at 412 nm. The outcomes were expressed in nanomoles of GSH 
per gram of wet tissue weight.30 
Estimation of superoxide dismutase action 
A blend was created by combining 0.1 mL of the sample, 1.2 
mL of sodium pyrophosphate buffer with a pH of 8.3 (0.052 
M), 0.1 mL of phenazine methosulphate (186 μm), 0.3 mL of 
nitro blue tetrazolium (300 μm), and 0.2 mL of NADH (750 
μm). The reaction was initiated by adding NADH, and after 
an incubation period of 90 seconds at 30°C, the reaction was 
halted by adding 1-mL of glacial acetic acid. After letting the 
blend sit for duration of 10 minutes, the chromogen’s color 
intensity was assessed at a wavelength of 560 nm, and this 
measurement was compared to a reference or blank sample.31

Catalase activity 
To start the reaction, 1-mL of a 30 mM H2O2 solution was 
blended with 1.9 mL of a 0.05 M phosphate buffer at pH 7, 
and the reaction was started utilizing adding 0.1 mL of the 
homogenate. The decline in absorbance resulting from the 
breakdown of H2O2 in the mixture was calculated utilizing a 
spectrophotometer at 240 nm at 1-minute intervals. The action 
of catalase was quantified in units of catalase per gram of wet 
tissue weight, and the calculations were done.32

Mitochondrial Enzyme Action

Succinate dehydrogenase (Complex II) action estimation
To evaluate succinate dehydrogenase activity, a mitochondrial 
suspension (0.05 mL) was introduced into a reaction mixture 
comprising 1.5 mL of phosphate buffer (0.2 M, pH 7.8), 0.2 mL 
of succinic acid (0.6 M, pH 7.8), 0.3 mL of 1% w/v BSA, and 
0.1 mL of potassium ferricyanide (0.3 M). The reduction in 
absorbance at 420 nm was continuously tracked for 3 minutes, 
using water as a reference. The outcomes were quantified as 
nanomoles of succinate oxidized per minute per gram of wet 
tissue weight.
Estimation of lactate dehydrogenase (Complex IV) action
Lactate dehydrogenase (LDH) action in rat brain homogenate 
was assessed utilizing a diagnostic kit from Tulip Diagnostics. 
The reagents were added, thoroughly mixed, and the 
initial absorbance was recorded after 1 minute. Subsequent 

absorbance readings were taken at 1-minute intervals for 2 
and 3 minutes. The average change in absorbance per minute 
was computed and reported as IU/L.
Estimation of Proinflammatory Cytokines

Interleukin 6 level
Interleukin 6 levels were quantified utilizing the ELISA 
method. The procedure and calculations were conducted 
following the manufacturer’s provided instructions and 
reported as picomoles per milligram of tissue sample.

RESULT AND DISCUSSION
Quercetin has been shown to improve learning as well as memory 
through escalating GSH levels and reducing OH amount.33 It 
not only inhibits acetylcholinesterase but also decreases MDA 
levels.34 Hesperidin (with its antioxidant and mitochondrial 
maintenance properties) has shown neuroprotective effects 
in a neuroblastoma cell line, benefiting memory retrieval and 
recognition memory consolidation by increasing the activity of 
antioxidant enzymes and GSH levels while decreasing MDA 
in the hippocampal region. The Rota rod test is employed to 
evaluate motor coordination and fatigue resistance in rodents, 
both of which are adversely affected as HD progresses, leading 
to altered muscle movements and diminished muscle grip 
strength.35,36 In this study, silymarin, quercetin, and Hesperidin 
individually upsurged fall-off time, with quercetin showing a 
notably pronounced effect. Combining silymarin with quercetin 
or Hesperidin, or utilizing all 3 together, resulted in significant 
improvements in fall-off time compared to the combined of 
silymarin and Hesperidin.37-42

Muscle Grip Strength (Rota Rod Apparatus)
Administering 3-NP intraperitoneally to rats with HD 
for 21 days led to a substantial decrease (p-value < 0.001) 
in the time it took for them to fall off compared to the 
normal control (NC) group. However, the groups treated 
with silymarin (200 mg/kg), quercetin, and hesperidin 
(50 mg/kg) showed noteworthy upsurges (p-value < 0.05), 
(p-value < 0.01), and (p-value < 0.05), correspondingly, in 
fall-off time compared towards the HC group. Combining 
silymarin (200 mg/kg, orally) with either quercetin or hesperidin 
(50 mg/kg, orally) led to a substantial upsurge (p-value < 0.001), 
and p-value < 0.01), separately, in fall-off time after Comparing 
to the HC group. Furthermore, the combination of silymarin 
(200 mg/kg, orally) with quercetin and hesperidin (50 mg/kg, 
orally) showed an even further significant upsurge (p-value < 0.001) 
in fall-off time compared to the HD rats as shown in Figure 1. 
The outcomes are presented as mean ± SEM (n = 6), and 
statistical investigation was accomplished utilizing one-way 
ANOVA monitored through Dunnett’s multiple comparison test.

The Huntington control rats exhibited signif icant 
differences after comparing to the NC rats at a p-value < 0.001. 
Regarding the treatment groups, the stages of significance 
comparing towards the Huntington control were as follows: 
*p <0.05, **p <0.01, and ***p <0.001. 
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Locomotor Activity
The intraperitoneal administrated of 3-NP over 21 days resulted 
in a substantial decrease (p-value < 0.001) in the number of 
beams cut in the HC group compared towards the NC group. 
However, the ST group (200 mg/kg) and the QT group 
(50 mg/kg) both exhibited a noteworthy upsurge in the number 
of beams cut (p-value < 0.05 and 0.01, separately). In contrast, 
the HT group did not show a noteworthy upsurge in the number 
of beams cut after equated to the HC group. Furthermore, after 
silymarin (200 mg/kg, orally) was administered in combined 
with either quercetin or hesperidin (50 mg/kg, orally), it led 
to a substantial upsurge in the number of beams cut (p-value  
< 0.001 and 0.05, separately) Comparing towards the HC group. 
Notably, the combination of Silymarin (200 mg/kg, orally) 
with Quercetin and Hesperidin (50 mg/kg, orally) resulted in 
a further pronounced upsurge (p-value <  0.001) in the number 
of beams cut while comparing to the HC group as shown in 
Figure 2.

Locomotor activity is an indicator of central nervous 
system excitability, and reduced activity is associated with 
CNS depression. As HD advances, motor function impairment 
can lead to altered muscle movements and reduced locomotor 
activity.43 In this study, silymarin, quercetin, and hesperidin 
individually upsurged the number of locomotions. Combining 
silymarin with quercetin or hesperidin, or utilizing all three 
together, led to a significant upsurge in the total of locomotions 
compared to the combined of silymarin and hesperidin.
String Test
The injection of 3-NP for 21 days demonstrated a substantial 
decrease (p-value < 0.0001) in fall-off time in the HC group 
compared to the NC group. Conversely, the ST group 
(200 mg/kg), the QT group (50 mg/kg), and the HT group (50 
mg/kg) exhibited upsurges in fall-off time (p-value < 0.01, 
0.001, 0.05, separately) after comparing to the HC group. The 
administration of silymarin (200 mg/kg, orally) in combined 
with hesperidin (50 mg/kg, orally) resulted in a substantial 
upsurge in fall-off time (p < 0.001) compared to the HC group. 
Furthermore, the combined action of silymarin (200 mg/kg, 
orally) and quercetin (50 mg/kg, orally), either with or deprived 

of hesperidin (50 mg/kg, orally), led to a significantly more 
pronounced upsurge (p < 0.0001) in fall-off time after compared 
towards the HC group, as illustrated in Figure 3.

The string test assesses rodent grip strength and is 
particularly relevant in HD due to the time off of the long-
latency stretch ref lex and delayed response to loading, 
resulting from reduced somatosensory input towards the cortex 
initiated through basal ganglia disruption.44 In this study, the 
furthermost noteworthy surge in fall-off time was perceived 
in the combined group of silymarin, quercetin, and hesperidin, 
and the combined effect of silymarin with quercetin. Notably, 
quercetin demonstrated a remarkable upsurge in rat fall-off 
time after being administered individually.
Malondialdehyde 
The intraperitoneal injection of 3-NP over 21 days resulted 
in an important upsurge (p <0.0001) in MDA levels in the 
HC group compared to the NC group. In difference, the ST 
group (dosed at 200 mg/kg), QT group, and HT group (dosed 
at 50 mg/kg) exhibited significant decreases in MDA levels 
(p-value < 0.01, 0.01, 0.001, separately) after compared to the 
HC group. Furthermore, the combination of silymarin (200 mg/
kg, orally) with quercetin and hesperidin (50 mg/kg, orally) 
exhibited a significant decrease (p-value < 0.001 and 0.0001) 
in MDA levels compared to the HC group. The combined 
action of silymarin (200 mg/kg, orally) with quercetin 
(50 mg/kg, orally) and hesperidin (50 mg/kg, orally) substantial 
upsurge MDA levels (p <0.0001) compared to the HC group 
as depicted in Figure 4.

Malondialdehyde (MDA) is a marker of lipid peroxidation, 
and upsurged levels indicate elevated free radical generation, 
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which can cause membrane damage and protein and DNA 
functional disturbances. In HD, an oxidative imbalance is 
apparent as elevated levels of lipid peroxidation and MDA due 
to mutant Htt inclusions in striatal neurons.45 In this study, a 
momentous decrease in MDA levels, primarily in the combined 
group of silymarin, quercetin, and hesperidin, as the other 
groups exhibited no lipid peroxidation.46-48

Reduced Glutathione 
The intraperitoneal injection of 3-NP over 21 days led to a 
significant decrease (p <0.001) in the GSH level in the HC 
group compared in the direction of the NC group. In contrast, 
the ST group (dosed at 200 mg/kg), QT group, and HT group 
(dosed at 50 mg/kg) demonstrated significant upsurges in GSH 
levels (p-value < 0.01, 0.01, 0.001, separately) after compared 
to the HC group.

Furthermore, the combination of silymarin (200 mg/kg, 
orally) with quercetin and hesperidin (50 mg/kg, orally) 
resulted in a significant upsurge in GSH levels (p-value 
< 0.001 and 0.001, separately) compared to the HC group. 
Additionally, the combination of silymarin (200 mg/kg, orally) 
with quercetin and hesperidin (50 mg/kg, orally) led to a more 
pronounced upsurge (p < 0.0001) in GSH levels compared to 
the HC group as illustrated in Figure 5.
Superoxide Dismutase
The intraperitoneal injection of 3-NP over a 21-day period 
resulted in a significantly decrease (p-value < 0.001) in the 

superoxide dismutase (SOD) level in the HC group after 
compared to the NC group. However, the silymarin group 
(administered at 200 mg/kg), the quercetin group (administered 
at 50 mg/kg), and the hesperidin group (administered at 
50 mg/kg) exhibited significantly upsurges in SOD levels 
(p-value < 0.01, 0.01, 0.001), separately, after Comparing to 
the HC group. Furthermore, the administration of silymarin 
(200 mg/kg, orally) in combined with quercetin and hesperidin 
(50 mg/kg, orally) resulted in a significant upsurge in SOD 
levels (p-value < 0.001) and (p-value < 0.0001), separately, 
after compared to the HC group. Additionally, the combined 
treatment of silymarin (200 mg/kg, orally) with quercetin 
(50 mg/kg, orally) and hesperidin (50 mg/kg, orally) knowingly 
upsurge SOD levels (p-value < 0.0001) comparing towards the 
HC group as shown in Figure 6.
Catalase
The injection of 3-NP for 21 days resulted in a significant 
decrease (p-value < 0.001) in the catalase (CAT) level in the 
HC group after compared to the NC group. The ST group 
(administered at 200 mg/kg) and the HT group (administered 
at 50 mg/kg) exhibited a significant upsurge in CAT levels 
(p-value < 0.01), but the QT group (administered at 50 mg/kg) 
did not exhibit a significant upsurge in CAT levels compared to 
the HC group. Moreover, the administration of silymarin (200 
mg/kg, orally) in combined with quercetin and hesperidin (50 
mg/kg, orally) resulted in a significant upsurge (p-value < 0.01 
and 0.001) in CAT levels, separately, after Comparing to the HC 
group. Furthermore, the combined of silymarin (200 mg/kg, 
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orally) with quercetin and hesperidin (50 mg/kg, orally) further 
significantly restored (p < 0.001) CAT levels after compared to 
the HC group as shown in Figure 7.
Succinate dehydrogenase 
The intraperitoneal injection of 3-NP over a period of 21 days 
resulted in a significantly decrease (p < 0.0001) in the succinate 
dehydrogenase (SDH) level in the HC group after Comparing 
to the NC group. However, the ST group (administered at 200 
mg/kg), QT group (administered at 50 mg/kg), and HT group 
(administered at 50 mg/kg) exhibited significant upsurges 
in SDH levels (p-value < 0.001, 0.01, 0.001 separately) after 
compared to the HC group. Furthermore, the administration 
of silymarin (200 mg/kg, orally) in combined with quercetin 
and hesperidin (50 mg/kg, orally) resulted in a significant 
upsurge in SDH levels (p-value < 0.001 and 0.001, separately) 
after Comparing to the HC group. Moreover, the combined 
treatment of silymarin (200 mg/kg, orally) with quercetin 
(50 mg/kg, orally) and hesperidin (50 mg/kg, orally) led to 
a more significant upsurge (p <0.0001) in SDH levels after 
comparing to the HC group, as illustrated in Figure 8.
Lactate Dehydrogenase 
The injection of 3-NP for 21 days resulted in a significant 
upsurge (p-value < 0.001) in the lactate dehydrogenase 
(LDH) level in the HC group after compared to the NC group. 
However, the ST group (administered at 200 mg/kg), QT group 
(administered at 50 mg/kg), and HT group (administered 
at 50 mg/kg) all indicated significantly decreases in LDH 

levels (p-value < 0.001, 0.01, 0.001, separately) compared to 
the HC group. Furthermore, the administration of silymarin 
(200 mg/kg, orally) in combined with quercetin and hesperidin 
(50 mg/kg, orally) resulted in a significant decrease in LDH 
levels (p-value < 0.001 and 0.001, separately) after compared 
to the HC group. Moreover, the combined treatment of 
silymarin (200 mg/kg, orally) with quercetin (50 mg/kg, orally) 
and hesperidin (50 mg/kg, orally) led to a more significant 
restoration (p < 0.0001) of LDH levels after compared to the 
HC group, as depicted in Figure 9
Interleukin-6 (IL-6)
The administration of 3-NP for 21 days resulted in a significant 
upsurge (p-value < 0.0001) in the IL-6 level within the HC 
group after compared to the NC group. However, the ST 
group (administered at 200 mg/kg), QT group (administered at 
50 mg/kg), and HT group (administered at 50 mg/kg) all 
exhibited significant decreases in IL-6 levels (p-value < 0.001, 
0.01, 0.001, separately) compared to the HC group.

Furthermore, the administration of silymarin (200 mg/kg, 
orally) in combined with quercetin and hesperidin (50 mg/kg, 
orally) resulted in a significant decrease in IL-6 levels 
(p-value < 0.001 and 0.0001, separately) after comparing to 
the HC group. Moreover, the combined treatment of silymarin 
(200 mg/kg, orally) with quercetin (50 mg/kg, orally) and 
hesperidin (50 mg/kg, orally) led to a more significant 
restoration (p <0.0001) of IL-6 levels after compared to the 
HC group, as shown in Figure 10.

Huntington’s disease is regarded as the degeneration 
of nerve cells in specific brain areas leading to a range of 
motor, psychiatric, and cognitive challenges.49 Memory 
issues are commonly associated with HD, which can be 
further complicated by attention-related problems. While 
several therapeutic approaches have been explored for HD, 
for example, fetal neural transplantation, RNA interference, 
and transglutaminase inhibitors, a cure for neurodegenerative 
diseases remains elusive.50

Recent research suggests that f lavonoids, including 
silymarin, quercetin, and hesperidin, exhibit protective effects 
by defending neurons against neurotoxin-induced damage, 
reducing inflammation in neurons, and enhancing memory, 
learning, and cognitive function.51 These flavonoids operate 
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Figure 9: Outcome of a mixture of silymarin, quercetin, and hesperidin 
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by inhibiting enzymes like acetylcholinesterase and beta-
secretase, countering free radicals, and modulating signaling 
pathways crucial for cognitive and neuroprotective functions.
Silymarin, specifically its active component silibinin, has shown 
promise as a neuroprotective agent, attributed to its capacity to 
mitigate oxidative stress, and influence processes such as beta-
amyloid aggregation, inflammation, and cellular apoptosis in 
the brain.52,53 Silibinin has been found to enhance learning and 
memory.54 Additionally, silymarin’s antioxidant effects, possibly 
due to its antioxidant properties, have been demonstrated to 
enhance memory and address learning disorders.51-54

CONCLUSION
Glutathione, an important endogenous antioxidant is found 
predominantly in its decreased form inside cells. It works 
by reacting with free radicals, preventing hydroxyl radical 
formation, and is transformed toward its oxidized form 
with the assistance of the enzyme glutathione peroxidase. 
Dysregulation of GSH metabolism in HD contributes to an 
imbalance in redox status. Reductions in GSH levels have 
been noted in the cortex of individuals with HD. This study 
highlighted that the most significant upsurge in GSH intensities 
occurred in the individual hesperidin set of animals, the 
combined group of all three, and the effect of silymarin with 
quercetin or hesperidin. SOD is a critical antioxidant enzyme 
involved in superoxide detoxification. In HD, cytosolic SOD 
activity decreases slightly.
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