
INTRODUCTION
The causative agent of tuberculosis (TB), Mycobacterium 
tuberculosis, continues to pose a serious threat to world health 
due to the rise of drug-resistant strains and the ongoing burden 
of new infections.1-6 In M. tuberculosis, cell division is an 
essential process that is controlled by proteins like Filamenting 
temperature-sensitive mutant Z (FtsZ), an essential part of 
the divisome machinery. Potential treatment approaches to 
fight this infectious disease include the creation of novel anti-
tubercular medicines by inhibition of FtsZ activity.7

This work starts an in-silico investigation of possible 
inhibitors that target the Mycobacterium TB cell division protein 

FtsZ. We use a dual strategy, combining structure-guided 
blind docking with natural ligand-inspired pharmacophore 
screening, to fully utilize the potential of computational 
approaches. This study’s natural ligand of interest is piperine, 
a bioactive substance with well-established pharmacological 
characteristics.8–11

Piperine, derived from black pepper (Piper nigrum), 
has exhibited diverse biological activities, including anti-
inflammatory and antimicrobial effects. By harnessing the 
inherent structural features of piperine, we construct a 3-point 
pharmacophore model, exploring the key elements crucial for 
effective binding to the FtsZ active site. This pharmacophore 
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model serves as a powerful screening tool against a chemical 
database, facilitating the identification of potential lead 
compounds with the ability to disrupt FtsZ function.12-17

We use structure-guided blind docking in conjunction with 
pharmacophore screening to decipher the dynamic interactions 
between the chosen ligands and the FtsZ protein. Through our 
computational investigation, we want to find drugs with strong 
interactions, advantageous binding modes, and promising 
inhibitory potential against M. tuberculosis FtsZ.18–20

The combination of blind docking and pharmacophore-
based screening offers a thorough approach to the in-silico 
identification of FtsZ inhibitors. The computational endeavor 
yielded valuable insights that could facilitate additional 
experimental validation and lead to the development of novel 
anti-tubercular medicines with lower resistance profiles and 
increased efficacy. New methods, like the one shown, help in 
the continued attempts to combat this ongoing public health 
problem as the global battle against tuberculosis continues.21–23

MATERIALS AND METHODS

Protein Selection and Preparation
A reliable protein structure database provided the crystal 
structure of M. tuberculosis Cell Division Protein FtsZ (PDB 
ID: 2Q1Y), guaranteeing accuracy and study-relevantness. 
Water molecules and other heteroatoms were eliminated to 
prepare the protein structure for further simulations, missing 
hydrogen atoms were added, and the proper charges were 
assigned.24

Ligand Selection and Preparation
Piperine, a natural ligand with known pharmacological 
properties and derived from black pepper, was chosen as 
the reference molecule for pharmacophore screening. The 
three-dimensional structure of piperine was retrieved from 
PubChem, and optimization and energy minimization were 
performed using molecular modeling software.25

Pharmacophore-Based Virtual Screening
A 3-point pharmacophore model was constructed based on the 
essential molecular features required for effective binding to 
the FtsZ active site. The pharmacophore model incorporated 
critical elements such as hydrogen bond donors, hydrogen 
bond acceptors, and hydrophobic regions. This model, inspired 
by the structural features of piperine, served as a filter for 
screening potential lead compounds.

The generated pharmacophore model was employed to 
screen a zinc drug diverse chemical database for compounds 
exhibiting a high degree of complementarity to the FtsZ 
binding site. A thorough virtual screening was performed, and 
the top-ranking compounds were selected for further analysis 
based on their pharmacophore scores.26

Molecular Docking Simulations and Selection of Top 
Candidates
The 3D structure of FtsZ was prepared for molecular docking 
simulations by addressing any missing atoms or residues. Blind 
docking simulations were conducted using CB Dock server 

based on auto dock vina advanced docking software, allowing 
ligands to explore potential binding sites within the entire FtsZ 
structure. The results were analyzed to identify ligand binding 
modes, interactions, and binding energies.

Ligand binding poses were scored based on binding energy 
calculations obtained from the docking simulations. The 
top-ranking compounds were selected as potential inhibitors 
against M. tuberculosis FtsZ. Further analysis of these hits’ 
binding interactions and structural features was performed 
to prioritize the most promising candidates for experimental 
validation.27

RESULTS

Crystal Structure Validation
The RCSB Protein Data Bank provided the crystal structure 
of the cell division protein FtsZ from Mycobacterium TB 
in association with GTP-gamma-S (PDB ID: 2Q1Y), which 
is displayed in Figure 1. The structure’s dependability and 
applicability were guaranteed for ensuing computational 
trials. Our computational screening and docking studies 
were conducted with the molecular target being the three-
dimensional structure of FtsZ.28

Pharmacophore-Based Virtual Screening and 
Identification of Potential Lead Compounds
Piperine was used as a reference molecule to successfully build 
the 3-point pharmacophore model seen in Figure 2, which was 
developed based on the critical properties for binding to the 
FtsZ active site. In order to select possible lead compounds, 
this model included essential components such as hydrophobic 
areas, hydrogen bond acceptors, and donors. The zinc drug 

Figure 1: The crystal structure of the Mycobacterium TB cell division 
protein FtsZ in combination with GTP-gamma-S (PDB ID: 2Q1Y)

Figure 2: Piperine-derived pharmacophore model
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Table 1: List of compounds screened by piperine-derived 
pharmacophore model

Compound ID Similarity score 2D Structure

ZINC
000019892375 1.000

ZINC
000012440615 0.675

ZINC
000001531693 0.662

ZINC
000014658239 0.635

ZINC
000050078406 0.592

ZINC
000096005552 0.583

ZINC
000012440744 0.569

ZINC 000005678824 0.554

ZINC 000103502519 0.548

ZINC 000225981532 0.537

ZINC 000085210077 0.523

database, a broad chemical library, was then searched using 
the pharmacophore model to find compounds that showed a 
high level of complementarity with the FtsZ binding site.29,30 
Table 1 lists the compounds that were screened using the 
Piperine-derived pharmacophore model.

The virtual screening process resulted in the identification 
of 10 top-ranking compounds from the zinc drug database 
based on their pharmacophore scores.31,32 These compounds 
exhibited favorable interactions with the FtsZ active site, 
suggesting their potential as inhibitors of M. tuberculosis FtsZ.
Molecular Docking Simulations
Molecular docking simulations were performed to further 
assess the binding affinities and interactions of the selected 
compounds with the 3D structure of FtsZ. Blind docking 
simulations using the CB Dock server and AutoDock Vina 
advanced docking software allowed the ligands to explore 
potential binding sites within the entire FtsZ structure. The 
results provided insights into ligand binding modes, key 
interactions, and binding energies.33

Ligand binding poses were scored based on the binding 
energy calculations obtained from the docking simulations. 
The top-ranking compounds exhibiting the most favorable 
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a consistent preference for interacting with pocket C5, as 
indicated by their docking scores ranging from -6.9 to -7.7. 
The amino acid residues involved in these interactions include 
GLY17, GLY18, GLY19, ASN41, THR42, LEU66, GLY67, 
ALA68, GLY69, ALA70, GLY101, GLU102, GLY103, GLY104, 

Table 2: Pockets cavity volume, center and cavity size found in FtsZ

CurPocket 
ID

Cavity 
volume (Å3)

Center 
(x, y, z)

Cavity size 
(x, y, z)

C1 5396 -12, 62, 13 30, 30, 17
C2 2347 -7, 62, -4 30, 20, 27
C3 616 -1, 81, -10 11, 13, 12
C4 601 1, 34, -11 12, 19, 10
C5 515 9, 39, 9 11, 14, 17

Figure 3: Cavities found in FtsZ

Table 3: Results of molecular docking studies by CB dock server

S. No. Compound ID Auto dock vina score
STD ZINC000019892375 Piperine -7.5
1 ZINC000012440615 -7.7
2 ZINC000001531693 -7.2
3 ZINC000014658239 -7.9
4 ZINC000050078406 -6.9
5 ZINC000096005552 -7.1
6 ZINC000012440744 -7.1

7
ZINC000005678824[4-Methyl-6-
(4-oxo-4-(1-piperidinyl)butoxy)-
2h-chromen-2-one]

-8.5

8 ZINC000103502519 -7.7
9 ZINC000225981532 -7.6

10 ZINC000085210077[3-Nitro-4’-
(piperidinocarbonyl)biphenyl] -8.5

Figure 4: Interactions of FtsZand piperine (Auto dock Vina Score -7.5) 

Figure 5: Interactions of FtsZ and 4-Methyl-6-(4-oxo-4-(1-piperidinyl)
butoxy)-2h-chromen-2-one  (Auto dock Vina Score -8.5 Vs -7.5 of 

Piperine)

Figure 6: Interactions of FtsZ and 3-Nitro-4’-(piperidinocarbonyl)
biphenyl (Auto dock Vina Score -8.5 Vs -7.5 of Piperine)

binding affinities and interactions with FtsZ, were selected as 
potential inhibitors against M. tuberculosis FtsZ. These lead 
compounds ‘ structural features and binding interactions were 
further analyzed to prioritize the most promising candidates 
for experimental validation.34

The analysis of the provided data on pockets in FtsZ 
reveals a diverse landscape of structural features. These 
pockets, labeled C1 to C5, exhibit significant variation in 
cavity volume, with C1 possessing the largest volume at 
5396 Å³, and C5 having the smallest at 515 Å³. The center 
coordinates of these pockets, representing their central points 
in three-dimensional space, provide insight into their spatial 
distribution. For instance, C1 is located at (-12, 62, 13), while 
C5 is positioned at (9, 39, 9). Additionally, the cavity sizes, 
denoted by dimensions in the x, y, and z directions, further 
differentiate these pockets (Figure 3). Notably, C1 stands out 
for its large volume and substantial size in all three dimensions 
(30, 30, 17 Å). Conversely, C2, while having a relatively large 
volume, exhibits a distinctive elongation in the z-direction 
(30, 20, 27 Å). The smaller volumes of C3, C4, and C5 and 
their varied sizes suggest structural diversity within the FtsZ 
protein. This information is crucial for understanding the 
potential functional implications of these pockets in biological 
processes, contributing to a comprehensive view of the 
protein’s architecture (Tables 2 and 3).35

The molecular docking results obtained from the CB 
Dock Server provide insights into the interactions between 
various compounds and specific pockets in the FtsZ protein 
(Figures 4-6). Notably, compounds ZINC000012440615, 
ZINC000001531693, ZINC000050078406, and others exhibit 
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development. The structural diversity observed in the FtsZ 
pockets highlights the complexity of the protein’s architecture 
and emphasizes the need for a multifaceted approach in drug 
discovery efforts. The identified lead compounds present 
promising candidates for future experimental studies, bringing 
us one step closer to developing novel therapeutics against M. 
tuberculosis.
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