
INTRODUCTION
Precision medicine (PM) is a term that refers to individualized 
treatment that involves the use of novel diagnostics and 
therapeutics tailored to a patient’s specific needs based on 
genetic, biomarker, phenotypic, or psychosocial characteristics.1 
The core principle of PM is that healthcare treatment is 
personalized for each individual based on his or her genes, 
lifestyle, and environment. However, developments in 
genetics and the increasing availability of health data offer 
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the opportunity to make accurate, personalized patient care 
a clinical reality.2

“Pharmacogenetic studies hold the promise of transforming 
our lives with the promise of individualized therapies; however, 
initial enthusiasm should be tempered in light of certain 
considerations.”

Pharmacogenomics is studying how a person’s genetic 
makeup affects the body’s response to drugs using human 
genomics and bioinformatics data. It is useful not only 
for the rational use of drugs but also for the development 
of tailored drugs.3 Individual responses to psychotropic 
medications, which include antidepressants, antipsychotics, 
and mood stabilizers, varies widely. It has been suggested that 
genetic polymorphisms are responsible for the considerable 
interindividual variability in response to psychotropic drugs. 
It is well known that treatment response varies within a 
heterogeneous population, with good and poor responders. 
Genetic predisposition, cohort heterogeneity, ethnicity, slow 
or fast metabolizers, epigenetic factors, and early or late illness 
influence patient and treatment response. These parameters 
impact whether a given individual responds well or poorly to 
a given treatment. The purpose of PM is to allow clinicians 
to predict the best course of action for a patient quickly, 
effectively, and accurately.4,5 Thus, pharmacogenetics can be 

ABSTRACT
Precision medicine has sparked a fierce debate about the pros and cons of a more individualized healthcare strategy. Advances 
in precision medicine have challenged traditional paradigms of healthcare decision-making. Pharmacogenomics is part of 
precision medicine. Although genetic testing in drug therapy is still a relatively recent development, it is growing rapidly. 
Pharmacogenetic tests reveal genetic biomarkers that indicate a person’s drug susceptibility. They are increasingly being used 
to improve medication adherence; however, their utility in older people with polypharmacy remains to be well-studied. Mental 
illness is a major public health problem at both the individual and societal levels. Despite advances in psychopharmacology and 
better knowledge of therapeutic principles, there is still a long way to go to incorporate pharmacogenetic and pharmacogenomic 
research into psychiatry’s clinical practice. Numerous genetic variants have been associated with anti-psychiatric responses 
and adverse effects of treatment. The aim of this review is to summarise responses to psychotropic drugs in the context of 
pharmacogenetic polymorphisms.
Keywords: Precision medicine, Psychotherapy, Gene predictors, Pharmacogenomics, Polymorphism, Drug metabolizing 
enzymes, Drug transporters, Drug targets.
International Journal of Pharmaceutical Quality Assurance (2024); DOI: 10.25258/ijpqa.15.1.75
How to cite this article: Sukumaran B, Sharumathi SM, Xavier RM, Arun KP, Deepalakshmi M. Precision Medicine in 
Psychotherapy: The Past, Present and Future. International Journal of Pharmaceutical Quality Assurance. 2024;15(1):491-501.
Source of support: Nil.
Conflict of interest: None

Precision Medicine in Psychotherapy: The Past, Present and Future
Bhavatharini Sukumaran, Sharumathi SM, Rinu M Xavier, Arun KP, Deepalakshmi M*

Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 
Tamil Nadu, India

Received: 28th August, 2023; Revised: 21st January, 2024; Accepted: 06th March, 2024; Available Online: 25th March, 2024

REVIEW ARTICLE

*Author for Correspondence: deepapharmacy@jssuni.edu.in

mailto:deepapharmacy@jssuni.edu.in


Psychotherapy Medicine: Precision and its Importance

IJPQA, Volume 15 Issue 1, January - March 2024 Page 492

used to reliably predict response to psychotropic treatment 
and guide the selection of appropriate psychiatric treatment 
in a way that maximizes drug efficacy and minimizes drug 
toxicity.6,7 The interplay of various gene products that influence 
pharmacokinetics and pharmacodynamics, such as drug-
metabolizing enzymes (DMEs), drug transporters, and drug 
targets, determines the majority of these drug responses.8 
This review provides an overview of the genetic predictors 
and drug responses to DMEs, transporter, and receptor gene 
polymorphisms associated with psychiatric treatments.
Role of Precision Medicine in Psychiatry
PM is a concept that has recently gained importance in all 
areas of medicine. In psychiatry, it is particularly important 
given the high societal cost of psychiatric illness and, more 
importantly, the long time that elapses before benefits from 
therapies are seen and the diversity of responses.9 Despite 
psychiatry being deeply rooted in a personalized approach, the 
transition to precision medicine, which requires additional data 
sources such as neuroimaging and/or biological measurements, 
still lags behind other areas of medicine. However, attempts 
to integrate precision medicine concepts into psychiatry are 
recent. The dexamethasone suppression test, for example, 
has moderate sensitivity (50–65%) but high specificity (96%) 
in predicting future depressive episodes as well as response 
to antidepressant medication. However, because altered 
hypothalamic–pituitary–adrenal (HPA) axis function is present 
in virtually all major psychiatric disorders, these results have 
limited clinical utility with respect to precision medicine.10

The problem is that developing new treatments is incredibly 
expensive and takes a lot of time. Tailoring the use of existing 
drugs to individual patients is a parallel and perhaps more 
immediate way to improve therapeutic efficacy and reduce 
common side effects. On the other hand, the field of PM 
has struggled to develop reliable methods for predicting 
response to psychotropic medications. Pharmacogenetic 
analyses of potential genes thought to be important in drug 
pharmacokinetics and pharmacodynamics have been the 
first step. The fact that there is generally no comprehensive 
mechanistic information on drug action hampered these 
studies. Today, thanks to the study of genetic diversity on a 
genome-wide scale, developments in genomics have made 
it possible to obviate the need for such knowledge. This has 
led to a number of positive results. For example, the human 
leukocyte antigen locus has been linked to clozapine-induced 
agranulocytosis, the melanocortin-4 receptor (MC4R) gene 
has been linked to antipsychotic-induced weight gain, and 
the contactin-associated protein-like 5 (CNTNAP5) 4,5 
gene has been linked to reduced symptoms associated with 
antipsychotic use in genome-wide association and/or whole-
exome sequencing studies.11

Based on genetic information, dosing recommendations 
for psychotropic drugs such as selective serotonin 
reuptake inhibitors (SSRIs), tricyclic antidepressants 
(TCAs), atomoxetine, and carbamazepine are gradually 
being introduced. Specifically, the genotypes of CYP2D6 

(atomoxetine) and/or CYP2C19 (SSRIs and TCAs), two 
genes encoding enzymes that contribute to the metabolism of 
various antidepressants, can be used to adjust dosing or select 
an alternative treatment based on recommendations from 
the Clinical Pharmacogenetics Implementation Consortium 
(CPIC) or the Dutch Pharmacogenetics Working Group 
(DPWG). These activities are an important step toward 
overcoming one of the major obstacles to precision psychiatry: 
the difficulty of converting pharmacogenetic findings into 
practical treatment recommendations.12

Genetic predictors in psychiatry
Genetic profiles in pharmacogenetic studies predict individual 
differences in therapeutic response or risk of side effects. 
Treatment selection in psychiatric practice is still primarily 
a trial-and-error process.13 A major goal of personalized 
medicine is to develop validated predictors of efficacy or 
toxicity. Several genetic variations related to drug response 
have been uncovered in different medical areas and have proven 
clinically valuable. To date, however, progress in psychiatric 
pharmacogenetics has been slow. There are a number of 
genetic correlates for antidepressants, antipsychotics, and 
mood stabilizers, most of which focus on candidate genes, but 
none have been established or shown clinical benefit. There 
were two fairly large GWAS meta-analyses of antidepressant 
responsiveness (N > 2200, with substantial sample overlap), 
neither of which found genome-wide significant associations. 
In another study, using GWAS data from the first meta-analysis, 
it was calculated that 42% of the total variance in antidepressant 
response was due to common genetic variations. Thus, like 
psychiatric disorders themselves, antidepressant response 
appears to be a strongly polygenic trait. Recent research has 
looked at genetic predictors of response to psychotherapy, a 
concept known as therapy genetics. However, few studies of 
candidate genes have been published to date, and no predictors 
have been identified.14

Pharmacogenomics of Drug-Metabolizing Enzymes
Individual heterogeneity of enzyme activity is caused by 
genetic polymorphisms arising from single base pair variations 
in the DNA sequence, which are common in DMEs.15 DME 
activity has historically been divided into phase I (oxidation, 
reduction, and hydrolysis) and phase II (conjugation reactions 
between an endogenous molecule such as glucuronic acid 
and a xenobiotic or its metabolite). Phase I DMEs include 
cytochrome P450 enzymes (CYP), f lavin-containing 
monooxygenases, monoamine oxidase, reductases, esterases, 
and alcohol dehydrogenases. Glutathione S-transferases, 
N-acetyltransferases, UDP-glucuronosyltransferases, epoxide 
hydrolases, and sulfotransferases are among the phase II DMEs.16

Polymorphisms in Genes Encoding Phase I DMEs
The CYP enzymes that convert drugs, toxins, and certain 
endogenous molecules such as steroids, lipids, and vitamins 
are responsible for the majority of phase I reactions. They play 
a key role in drug metabolism and are responsible for 70 to 
80% of phase I metabolism.17 Over 2,000 mutations have been 
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identified, with specific single nucleotide polymorphisms (SNPs) 
significantly impacting activity CYP. CYPs, therefore, play a key 
role in individual drug response, and their genetic variability 
should be considered in personalized medicine.18 Since the 
identification of all major enzymes that metabolize drugs (CYP) 
and their major gene variants, pharmacogenetics has had a 
significant impact on psychotherapeutic drug therapy. CYP1A2, 
CYP2C9, CYP2C19, CYP2D6, and CYP3A4 are the major CYP 
enzymes in psychiatry, as shown in Figure 1.16 Polymorphisms 
in genes encoding phase I DMEs are listed in Table 1.
CYP1A2
CYP1A2 in the human liver is a major DME, accounting for 
13–15% of the total CYP enzyme.21 Many clinically used drugs 
(e.g., clozapine, olanzapine, theophylline, and tacrine) and 
several endogenous substances (e.g., melatonin, estrone, and 
estradiol) are metabolized by this enzyme.22 CYP1A2 activity 
is known to be induced or inhibited by a number of drugs. 
Fluvoxamine, a potent CYP1A2 inhibitor, increases plasma 
concentrations of typical antipsychotics (e.g., haloperidol).23 
Smoking, a known inducer of CYP1A2, significantly decreases 
plasma levels of most typical antipsychotics.24 When clozapine 
doses were studied between smokers and nonsmokers, they 
were almost twice as high in smokers.25 Smoking cessation, 
on the other hand, was associated with an increase in 
chlorpromazine plasma concentrations and adverse effects.26

CYP2C9 and CYP2C19
The CYP2C enzyme subfamily (which includes CYP2C8, 
CYP2C9, CYP2C18, and CYP2C19) accounts for approximately 
18% of CYP protein content in the human liver and metabolizes 
approximately 20% of currently prescribed drugs.27 CYP2C9 
and CYP2C19 are most involved in the metabolism of 
xenobiotics.28 They are polymorphically expressed, with 12 
allelic variants for CYP2C9 and 16 for CYP2C19. Many of 
these variants, of which the most common are *2 and *3, are 
associated with decreased substrate metabolism29,30 CYP2C9 
plays a role in the metabolism of a number of psychotropic 
drugs (tetrahydrocannabinol, f luoxetine, amitriptyline, 
phenytoin, etc.). Endogenous substrates such as epinephrine 
and serotonin have been shown to affect CYP2C9 activity.31 

Plasma concentrations of f luoxetine and norf luoxetine 
after administering the same dose of the drug show wide 
interindividual variability, which may be partly due to 
differences in CYP2D6 and CYP2C9 activity. 

CYP2C19 plays a role in the oxidative metabolism of 
a number of antidepressants, including TCAs, SSRIs, and 
benzodiazepines.32 CYP2C19 extensively metabolizes the 
tertiary TCAs amitriptyline, imipramine, and clomipramine 
to secondary amines, with CYP2C9, CYP3A4, and CYP1A2 
contributing.33 In-vivo CYP2C19 polymorphisms appear to 
affect N-demethylation of amitriptyline. Subjects with two 
mutant CYP2C19 alleles (*2, *3) had higher amitriptyline 
serum concentrations and a greater amitriptyline/nortriptyline 
ratio at steady state than those with wild-type genotype.34 
Citalopram and escitalopram are metabolized primarily by 
CYP2C19 and CYP3A4 and to a lesser extent by CYP2D6. 
Compared with homozygous and heterozygous EMs, PMs 
have lower oral clearance of citalopram.35 Several isoforms of 
CYP are involved in the demethylation of sertraline to a nearly 
inactive metabolite, of which CYP2C19 is the most important.36 
CYP2D6
CYP2D6 accounts for only 5% of the total content of CYP in 
the liver. CYP2D6 is involved in the metabolism of several 
antidepressants, including TCAs, SSRIs, and other newer 
drugs. Some cases of adverse effects associated with increased 
serum TCA concentrations in CYP2D6 PMs or treatment 
failure due to decreased concentrations in CYP2D6 UMs have 
been reported.33 Polymorphic CYP2D637 metabolizes SSRIs 
such as fluoxetine, paroxetine, fluvoxamine and citalopram/
escitalopram. Within the SNRI class, CYP2D6 polymorphisms 
appear to have a significant impact on venlafaxine metabolism; 
in particular, CYP2D6 appears to play a key role in the synthesis 
of the active metabolite O-desmethylvenlafaxine.38 For some 
TCAs in PMs, the average dose reduction was 50 to 80%, and 
for some SSRIs, 30%. For UMs, dose increases of 260% were 
reported for desipramine and 230% for nortriptyline.39

CYP2D6 is involved in the metabolism of a number of 
antipsychotics. CYP2D6 PMs had higher haloperidol serum 
concentrations, lower clearance, and longer half-life than 
Ems.40 Several studies showed that CYP2D6 PM patients 
on risperidone had a higher rate of adverse effects such as 
QTc interval prolongation, parkinsonism, and treatment 
discontinuation.41,42 In patients with the CYP2D6-PM 
phenotype, aripiprazole exposure is increased by 80% and 
dehydroariprazole exposure is decreased by 30%, resulting in 
a 60% increase in total exposure to the drug. Elimination half-
lives of aripiprazole and dehydroaripiprazole also increases 
dramatically with PMs.43 In summary, there is strong evidence 
that CYP2D6 genetic polymorphisms are associated with the 
pharmacokinetic parameters of numerous psychotropic drugs.
CYP3A4
CYP3A4 is the most abundant CYP isoform, accounting for 
30% of the total CYP in the human liver and 70% in the small 
intestine.44 It is involved in the biotransformation of several 
antidepressants (TCAs, sertraline, citalopram, escitalopram, 

Figure 1: CYP enzymes and psychotropic medications16,19,20
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Table 1: Polymorphisms in genes encoding Phase I DMEs

S. No. Name of the drug Gene Variant Effects observed Year of 
research

1. Haloperidol50 CYP2D6
CYP2D6*1
CYP2D6*5
CYP2D6*10

CYP2D6 *5 and *10 are associated with decreased metabolism of 
haloperidol in people with schizophrenia compared with CYP2D6 *1 2001

2. Clomipramine51 CYP2C19 CYP2C19*1
CYP2C19*2

CYP2C19 *2 is associated with increased dose- and weight-corrected 
mean clomipramine concentrations and a higher clomipramine/desmethyl 
clomipramine metabolic ratio during clomipramine treatment in people 
with mental disorders compared with CYP2C19 *1/*1

2001

3. Zuclopenthixol52 CYP2D6
CYP2D6*1
CYP2D6*3
CYP2D6*4

CYP2D6 *3 and CYP2D6 *4 are associated with decreased metabolism 
of zuclopenthixol in people with schizophrenia compared with CYP2D6 
*1

2002

4. Amitriptyline53 CYP2C19
CYP2C19*1
CYP2C19*2
CYP2C19*3

CYP2C19 *1/*3 + *2/*3 are associated with increased dose- and weight-
corrected amitriptyline/nortriptyline ratios when treated with amitriptyline 
in people with mental disorders compared with CYP2C19 *1/*1

2002

5. Haloperidol40 CYP2D6 CYP2D6*1
CYP2D6*5

CYP2D6 *5 is associated with decreased metabolism of haloperidol in 
people with schizophrenia, compared with CYP2D6 *1 2003

6. Haloperidol54 CYP2D6 CYP2D6*1
CYP2D6*4

CYP2D6 *4/*4 is associated with decreased metabolism of haloperidol in 
healthy individuals compared to CYP2D6 *1/*1 + *1/*4 2003

7. Haloperidol55 CYP2D6 CYP2D6*1
CYP2D6*2

CYP2D6 *2/*2 is associated with increased concentrations of haloperidol 
in people with schizophrenia compared to CYP2D6 *1/*1 + *1/*2 2003

8. Paroxetine56 CYP2D6

CYP2D6*1
CYP2D6*3
CYP2D6*4
CYP2D6*5

CYP2D6 *3/*4 + *4/*4 + *4/*5 is associated with increased plasma 
concentrations of paroxetine during treatment with paroxetine in 
patients with major depressive disorder compared with CYP2D6 normal 
metabolizers

2003

9. Venlafaxine57 CYP2D6

CYP2D6*1
CYP2D6*4
CYP2D6*5
CYP2D6*6

CYP2D6 *5/*4 + *6/*6 + *6/*4 are associated with an increased risk of 
adverse events during treatment with venlafaxine in patients with major 
depressive disorder compared with CYP2D6 *1/*1

2006

10. Risperidone58 CYP2D6

CYP2D6*1
CYP2D6*3
CYP2D6*4
CYP2D6*5

CYP2D6 ultrarapid metabolizer phenotype is associated with increased 
risperidone clearance in patients with psychotic disorders compared with 
CYP2D6 *1/*3 + *1/*4 + *1/*5 (assigned as intermediate metabolizer 
phenotype)

2013

11. Clozapine59 CYP1A2 CYP1A2*1A
CYP1A2*1F

CYP1A2 *1F/*1F is associated with increased risk of seizures when 
people with schizophrenia are treated with clozapine compared with 
CYP1A2 *1A/*1A + *1A/*1F

2013

12. Quetiapine60 CYP2D6 CYP3A4*1
CYP3A4*22

CYP3A4 *1/*22 + *22/*22 is associated with increased quetiapine 
concentrations in people with psychotic disorders, compared with 
CYP3A4 *1/*1

2014

13. Citalopram61 CYP2C19 CYP2C19 poor 
metabolizers

CYP2C19 poor metabolizers are associated with an increased risk of 
prolonged electrocardiogram rate when treated with citalopram compared 
with CYP2C19 normal metabolizers

2014

14. Aripiprazole62 CYP2D6
CYP2D6 poor 
metabolizer 
genotype

CYP2D6 Poor metabolizer genotype is associated with increased dose-
adjusted trough concentrations of aripiprazole in people with psychotic 
disorders compared with normal CYP2D6 metabolizer genotype

2015

15. Risperidone63 CYP3A4 rs35599367 Genotype AG is associated with decreased risperidone clearance in 
people with psychosis compared to genotype GG 2015

16. Escitalopram64 CYP2C19

CYP2C19*1
CYP2C19*2
CYP2C19*3
CYP2C19*4

CYP2C19 *2 + *3 + *4 are associated with increased exposure to 
escitalopram compared to CYP2C19 *1/*1 2018

17. Sertraline65 CYP2C19
CYP2C19*1
CYP2C19*2
CYP2C19*3

CYP2C19 *2/*2 + *2/*3 (assigned as poor metabolizer phenotype) 
are associated with decreased metabolism of sertraline compared to 
CYP2C19 *1/*1 (assigned as normal metabolizer phenotype)

2020

venlafaxine, mirtazapine, reboxetine), antipsychotics 
(haloperidol, pimozide, clozapine, quetiapine, risperidone, 

aripiprazole, ziprasidone, lurasidone), mood stabilizers 
(carbamazepine), and benzodiazepines (eg, alprazolam, 
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midazolam, and triazolam), and it is also responsible for 
the metabolism of the newer antipsychotics quetiapine and 
lurasidone. Functional variability is associated with decreased 
activity of CYP3A4*6, CYP3A4*17, CYP3A4*20, and 
CYP3A4*22 variants, whereas CYP3A4*18A is associated 
with increased activity.45

Cytochrome P450 oxidoreductase
POR is an electron donor for several oxygenates, including 
heme oxygenase, cytochrome b5, 7-dehydrocholesterol 
reductase, squalene monooxygenase, and CYP enzymes, and 
plays an important role in steroid and drug metabolism.46 
According to research, the gene POR is highly polymorphic, 
and it may play a role in the interindividual variability of 
drug metabolism and drug responses by influencing the 
activity of the enzymes CYP.47 CYP3A4 and CYP3A5 are the 
enzymes that metabolise midazolam, a benzodiazepine. Elens 
et al. found that POR *28 mutations decreased midazolam 
metabolism in CYP3A5*1 carriers with solid tumors and 
that the decrease in CYP3A5 activity was related to POR 
*28, demonstrating that POR genetic variants can alter the 
therapeutic efficacy of midazolam.48 For clobazam, a longer-
acting benzodiazepine metabolized by CYP3A4 and CYP2C19 
in the liver, there are POR polymorphisms associated with 
clobazam efficacy, according to the research.49

Polymorphisms in Genes Encoding Phase II DMEs
The most important group of phase II enzymes are the 
glucuronidation enzymes. UDP-glucuronosyltransferases 
(UGTs) are a family of liver enzymes that metabolize 
certain psychotropic drugs.66 One of the enzymes that 
degrade catecholamines such as dopamine, epinephrine, and 
norepinephrine is catechol-O-methyltransferase (COMT).67 
Since all antipsychotics have an effect on the dopamine system, 
this may help to moderate their effects.68

UGT
The isozyme UGT1A4 was discovered to be the most important 
isozyme for glucuronidation of some TCAs and antipsychotics, 
both typical and atypical.69,70 According to the results of 
Erickson-Ridout et al. the UGT1A1A(TA)7TAA and UGT1A4 
Leu48Val polymorphisms significantly affect clozapine and/
or N-desmethyl clozapine (dmCLZ) glucuronidation in-vitro, 
whereas the UGT1A448Val and UGT2B1067Tyr variants 
significantly alter olanzapine glucuronidation in-vitro, which 
may be useful in determining interindividual differences 
in clozapine, dmCLZ, and olanzapine metabolism in-vivo. 
UGT1A4 is a substrate for imipramine, amitriptyline, 
chlorimipramine, and doxepin.71 
COMT
The COMT gene has several allelic variants, the best studied 
of which is rs4680, which causes a change in enzyme structure 
[Val (108/158) Met] that affects activity (high activity in 
the Val/Val genotype, moderate activity in the Val/Met 
genotype, and low activity in the Met/Met genotype).72 
This polymorphism has been associated with antidepressant 

treatment, with rs4680 particularly affecting responsiveness 
to fluoxetine and paroxetine.73

Pharmacogenomics of Drug Transporters
Because of their importance in the mechanisms controlling the 
pharmacokinetic properties of drugs and in the development of 
cellular drug resistance through decreased uptake or increased 
efflux, drug transporter proteins are gaining importance in a 
variety of therapeutic areas. Membrane transporters, which 
belong to the ATP-binding cassette transporter family, and 
solute carriers are the two most commonly studied membrane 
transporters.74 The genes encoding these transporters are 
polymorphic, resulting in transporters with varying levels of 
expression and potency. As a result, mutations in transporters 
are often associated with variations in drug pharmacokinetics 
and treatment response.75 Some transporters, called influx 
transporters, accelerate and assist drug entry into target 
cells, while others, called eff lux transporters, slow and 
prevent it. Both the influx and efflux transporters play a 
role in determining a drug’s effect by regulating the drug’s 
availability in the blood.76 Polymorphisms in genes encoding 
drug transporters are listed in Table 2.
Polymorphism in genes encoding influx transporters
Several types of inf lux or uptake transporters transport 
substrates against a concentration gradient to mediate 
drug uptake and reabsorption in cells. The OATPs, OCTs, 
concentrative nucleoside transporters (CNTs), PEPTs, and 
mono-carboxylate transporters (MCTs) are the major influx 
transporters in the solute carrier family (SLC).77

A large number of pharmacogenetic studies have focused 
on genes that control or affect serotonin neurotransmission. 
The pharmacogenetics of the HTTLPR (l/s) polymorphism 
has been investigated as a possible marker of SSRI symptom 
response. In a study by Smeraldi et al., carriers of the l allele 
showed a stronger response to fluvoxamine than homozygotes 
of the short variant (s/s)78 in patients with major depression, and 
Pollock et al. found a similar effect on response to paroxetine 
treatment in major depression.79 Many studies have examined 
the effects of the neuronal dopamine transporter (DAT) 9/10 
repeat on treatment response in schizophrenia and depression 
and found an association with clozapine responsiveness.80

Polymorphism in genes encoding efflux transporters
The ATP-binding cassette transporter family (ABC) is involved 
in the transmission of several drugs. ABCB1 (P-glycoprotein, 
MDR-1), ABCC1 (MRP1), and ABCG2 (BCRP, MXR, 
ABCP) are among the 49 known ABC genes that use ATP to 
transport substrates across membranes.81 These transporters 
are responsible for preventing the absorption of drugs through 
the intestinal wall, transporting substrates from tissues into 
the bloodstream, and ultimately mediating drug clearance.82

P-glycoprotein (P-gp) is a membrane transport protein 
(ABCB1). It is also known as multidrug resistance protein 1 
(MDR1) and is responsible for the efflux of a variety of drugs. 
Due to its position at the blood-brain barrier, P-gp can modulate 
the concentration of antidepressants and atypical antipsychotics 

https://en.wikipedia.org/wiki/Cytochrome_P450_reductase
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in the brain.67 As shown by a correlation between the 3435T 
allele, olanzapine plasma levels, and a reduction in positive 
symptoms of schizophrenia, P-gp polymorphisms may 
influence olanzapine penetration into the central nervous 
system.83 One study found that patients with SNP C3435T 
had a significantly higher incidence of postural hypotension 
after nortriptyline therapy. This was hypothesized to be due 
to a relative increase in the accumulation of nortriptyline or its 
metabolites in the brain as a result of impaired P-gp function.84 
The ABCB1 genotype has been shown to be significantly 
related to response to paroxetine treatment.85

Pharmacogenomics of Drug Targets
Polymorphisms in several genes that are direct targets of 
psychotropic drugs, particularly polymorphisms in the 
dopamine and serotonin receptor genes (5- HT), have been the 
subject of numerous studies. As shown in Figure 2, studies have 
found associations between these polymorphisms and response 
to antipsychotics or antidepressants, as well as extrapyramidal 
symptoms triggered by antipsychotics (e.g., tardive dyskinesia, 
acute akathisia).95 Polymorphisms in genes encoding drug 
targets are listed in Table 3.
Dopamine receptors
Dopamine receptors are divided into a D1-like family (D1 and 
D5, which are coupled to a Gs protein and activate adenylate 
cyclase) and a D2-like family (D2, D3, and D4, which are 
coupled to a Gi protein and inhibit adenylate cyclase). Only 
the D2-like family has been associated with response to 

psychotherapy.67 The D2 receptor has a substantial number 
of polymorphisms, including a mutation that alters structure 
(Ser311Cys) and a polymorphism that alters function (–141 Ins/
Del).96 Studies have shown that schizophrenic patients with 
the 141C Ins/Del polymorphism respond poorly to clozapine 
in the first episode, take longer to respond to olanzapine and 
risperidone, and respond less often to chlorpromazine.68 
Antipsychotic-induced tardive dyskinesias, for which 
homozygosity for the glycine variant of the D3-Ser9Gly 
polymorphism has been associated with a higher risk of 
developing tardive dyskinesias.97

Serotonin receptors
The mode of action of atypical antipsychotics is significantly 
related to the 5-HT2A receptor. According to Olajossy-
Hilkesberger et al., the polymorphisms in the 5-HT2A receptor 
gene (His452Tyr and T102C) can alter the individual response 
to olanzapine, especially to positive symptoms.98 According 

Table 2: Polymorphisms in genes encoding drug transporters

S. No Name of the drug Gene Variant Effects observed Year of 
research

1. Nortriptyline76 ABCB1 rs1045642
The genotype AA is associated with an increased likelihood of orthostatic 
hypotension with nortriptyline treatment in patients with major depressive 
disorder compared with the genotypes AG + GG

2002

2.

Amitriptyline 
Citalopram 
Paroxetine 
Venlafaxine86

ABCB1 rs7787082
Allele A is associated with an increased likelihood of remission when 
people with depression are treated with amitriptyline, citalopram, 
paroxetine, or venlafaxine compared with allele G

2008

3. Risperidone87 ABCB1 rs1128503 Genotypes AA + AG are associated with better response to risperidone 
than genotype GG in children with autistic disorder 2010

4. Clozapine88 ABCB1 rs7787082 Allele G is associated with a lower response to clozapine in people with 
schizophrenia compared to allele A 2012

5. Olanzapine89 BDNF rs6265 Genotype CC is associated with an increased response to olanzapine in 
people with schizophrenia compared to genotypes CT + TT 2014

6. Fluoxetine90 ABCB1 rs2032582 Allele A is associated with an enhanced response to fluoxetine in children 
with depressive disorder compared to allele C 2014

7. Haloperidol91 ABCB5 rs17143212
The genotype CT is associated with increased drug toxicity when treated 
with haloperidol in people with psychotic disorders compared to genotype 
CC

2015

8. Clozapine92 ABCB1 rs1045642 Genotype AA is associated with an increased risk of agranulocytosis and 
neutropenia with clozapine treatment compared with genotypes AG + GG 2017

9. Lithium93 ADCY1 rs1521470 Allele A is associated with decreased response to lithium in people with 
bipolar disorder compared with allele G 2018

10. Olanzapine94 ABCB1 rs4728709 Genotype GG is associated with an increased likelihood of asthenia on 
olanzapine in healthy individuals compared to genotypes AA + AG 2021

Figure 2: Drug target polymorphisms and psychotropic medications

https://www.sciencedirect.com/topics/medicine-and-dentistry/drug-metabolizing-enzyme
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Table 3: Polymorphisms in genes encoding drug targets

S. No Name of the drug Gene Variant Effects observed Year of 
research

1. Risperidone102 DRD2 rs1800497 Allele A is associated with increased prolactin levels when treated with 
antipsychotics in people with schizophrenia, compared to allele G 2004

2. Fluoxetine103 HTR1A rs6295 Genotype CC is associated with increased response to fluoxetine in 
people with major depressive disorder compared to allele G 2006

3. Citalopram104 CRHR2 rs2270007
The genotypes CC + CG are associated with a decreased response 
to citalopram in people with major depressive disorder compared to 
genotype GG

2007

4. Fluoxetine105 CRHR1 rs242941
Genotype CC is associated with increased response to treatment with 
fluoxetine in people with major depressive disorder and severe anxiety 
compared to allele A

2007

5. Olanzapine106 ADRB3 rs4994
Genotype GG is associated with an increased risk of weight gain with 
olanzapine treatment in people with schizophrenia, compared with 
genotypes AA + AG

2008

6. Olanzapine107 DRD2 rs2734842 Allele G is associated with increased prolactin levels during treatment 
with olanzapine in women, compared with allele C 2011

7. Olanzapine108 HTR2C rs1414334 Allele G is associated with increased weight gain during treatment with 
olanzapine in women with mental disorders, compared with allele C 2012

8. Bupropion109 DRD1 rs11746641
Allele G is associated with increased likelihood of smoking abstinence 
in slow nicotine metabolizers when exposed to bupropion or nicotine in 
individuals with tobacco use disorder, compared with allele T

2012

9. Risperidone110 ADRB2 rs1042713
Allele G is associated with an increased likelihood of sexual adverse 
events when treated with risperidone in people with schizophrenia 
compared with allele A

2013

10. Duloxetine111 DRD3 rs167770 Genotype AG is associated with a lower response to duloxetine in people 
with anxiety disorders compared to genotypes AA + GG 2013

11. Aripiprazole112 DRD2 rs2514218

The CC genotype is associated with increased severity of psychomotor 
agitation on aripiprazole in people with psychotic disorders, 
schizoaffective disorder, or schizophrenia compared with the CT + TT 
genotypes

2015

12. Citalopram & 
Sertraline113 HTR2A rs6311

Allele T is associated with increased likelihood of sexual dysfunction, 
psychologically, by citalopram or sertraline in people with major 
depressive disorder, compared to allele C

2020

to Gunes et al., the 5-HT2C and 5-HT2A receptor-encoding 
genes and HTR2C and HTR2A polymorphisms are associated 
with metabolic abnormalities in patients receiving olanzapine 
or clozapine.99 Another meta-analysis found that HTR2C 
polymorphisms, particularly Cys23Ser, are associated with 
response to antipsychotics in male schizophrenia patients, 
especially clozapine with HTR2C antagonism or partial 
agonism.100 The 5-HT2A receptor, which is overexpressed in 
depressed patients, has been shown to be downregulated by 
paroxetine in several studies.101

Precision Medicine: Future Perspective
PM is a rapidly expanding approach to health care that focuses 
on discovering treatments and interventions that work for people 
based on their genetic makeup rather than their symptoms. 
An emerging trend in PM is the use of artificial intelligence 
and machine learning to improve traditional symptom-
based medicine and enable early intervention with advanced 
diagnostics and better, more cost-effective therapies. However, 
we need to improve healthcare genetic testing procedures 
and integrate genetic composition and metabolic function 

research into traditional healthcare. We also need to establish 
prophylactic and therapeutic interventions and a library of 
information on the application of genetics in health care.114

CONCLUSION
In summary, pharmacogenetic studies have identified a number 
of genetic variables that influence response to psychotropic 
drug treatment, including antipsychotic efficacy, antidepressant 
response, and the occurrence of drug-induced adverse 
events. In particular, variants in CYP enzymes, dopamine, 
and serotonin genes have been associated with various 
improvements in response and treatment-related adverse events 
in numerous events. These results are still preliminary and 
need to be replicated and validated. It is expected that the field 
of pharmacogenomics will be able to provide individualized 
medical therapies based on genetic profiling, which could be 
important for future therapeutic methods.
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