
INTRODUCTION
New approaches to treating breast cancer are urgently needed 
because it is a major problem in world health.1 The serine/
threonine protein kinase casein kinase II (CK2) has recently 
come to light as an important participant in a number of cellular 
activities, such as signal transduction, cell cycle regulation, and 
apoptosis. Deregulations of CK2 activity have been implicated 
in the progression and maintenance of some cancers, making 
it a striking target for anticancer drug development. This 
research endeavors to explore the potential of apigenin, a 
natural compound with known pharmacological properties, 
as a CK2 inhibitor for breast cancer treatment.2,3

The integration of computational approaches, collectively 
referred to as in-silico methods, has revolutionized drug 
finding by offering a price and time-efficient means of 
predicting molecular interactions.4 In this study, we employ 
a hybrid in-silico approach, combining molecular docking, 
dynamics simulations, and quantitative structure-activity 
relationship (QSAR) analyses to design and discover novel 
apigenin derivatives with enhanced CK2 inhibitory activity.5 
Apigenin, a flavonoid abundantly found in various plants, has 
demonstrated promising anticancer properties and low toxicity 
in preclinical studies.6-8

This research aims to bridge the gap between experimental and 
computational methodologies to accelerate the identification 
and optimization of apigenin-based compounds as potential 
CK2 inhibitors. The multifaceted in-silico techniques 
employed in this study provide a rational and systematic 
framework for the design and discovery of novel drugs 
targeting CK2, fostering the development of effective and 
selective therapies for breast cancer. As we delve into this 
hybrid in-silico exploration, the ultimate goal is to contribute 
to the advancement of precision medicine and the improvement 
of therapeutic outcomes for breast cancer patients.9

METHODS

Drug-Drug Transcriptomic Similarity Analysis
Using extensive transcriptome databases, an examination 
of the similarities between apigenin and its derivatives 
prompted the discovery of putative CK2 inhibitors for breast 
cancer. The Connectivity Map Touchstone tool (https://
clue.io/touchstone) enabled the methodical identification 
of apigenin-derived compounds for possible breast cancer 
treatment by using the drug-drug transcriptomic similarity 
technique. Firstly, the website of the Touchstone tool 
was accessed, and then a comprehensive collection of 
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gene expression profiles from different perturbagens was 
examined. When the program was run, it compared the 
supplied gene expression signature with the extensive 
Touchstone dataset to perform a network mapping study.  
After a careful analysis of the results, apigenin-derived 
compounds that showed a substantial t ranscriptome 
resemblance to the input signature were prioritized. After 
that, further analysis was done on the input query as well as 
the chemicals that were found in order to determine common 
biological pathways and possible targets for treatment. The 
results of this investigation provided support for theories about 
the potential of the chosen compounds as CK2 inhibitors for 
the treatment of breast cancer.10

Protein Preliminary Processing Through PDB Redo 
Alongside Molecular Docking
Using the PDB REDO server, the CK2 crystal structure was 
downloaded and produced (Figures 1 and 2). Next, we ran 
molecular docking simulations on the CK2 enzyme to see how 
well apigenin and a few other chemicals bound and interacted 
with it. For this, we used the AutoDock utility that is part of 
the cb-dock server. Compounds were assessed based on their 
predicted binding affinities following an extensive analysis 
of the virtual screening outcomes derived from docking 
scores.11,12

This study aimed to provide light on the molecular 
interactions and binding mechanisms of apigenin-based 
medications as prospective CK2 inhibitors for breast cancer 
by visualizing the crystal structure of CK2 in complex with 
the reference chemical. The findings should be useful for the 
rational design of such drugs.13-16

RESULTS

Outcomes of Drug-Drug Transcriptomic Similarity 
Investigation

Heat map
The heatmap illustrates the Pearson correlation coefficient 
between the gene expression profiles of apigenin and 17 other 
compounds (Figure 3). On the color scale, blue signifies a 
negative correlation, while yellow indicates a positive one. 
Apigenin exhibits a robust positive correlation with several 
compounds, including quercetin, nifedipine, BL01242, and 
HO-013, suggesting similar effects on gene expression. 
Conversely, apigenin demonstrates a negative correlation 
with certain compounds such as PHA-7030ET, estaurtino, 
and RHO, indicating opposing effects on gene expression. 
The compounds tend to cluster based on their similarity to 
apigenin, with quercetin, nifedipine, and BL01242 forming 
a distinct cluster due to their strong positive correlation 
with apigenin. The heatmap implies that apigenin shares 
similarities with other compounds regarding their effects 
on gene expression, which could be valuable for identifying 
new drugs with comparable therapeutic effects or elucidating 
apigenin’s mechanisms of action.
Average transcriptional impact
Figure 4 depicts the transcriptional influence of apigenin, 
a naturally occurring flavonoid, across four fundamental 
cell lines: HCT-116 (colon cancer), MCF-7 (breast cancer), 
A549 (lung cancer), and PC-3 (prostate cancer). The impact 
is quantified by the variance in gene expression between 
apigenin-treated and control cells.

Figure 1: Protein casein kinase II (PDB ID: 1DAW)

Oc1ccc(cc1)c2cc(=O)c3c(O)cc(O)cc3o2
Figure 2: 2D structure apigenin along with SMILES

Figure 3: HEATMAP for apigenin

Figure 4: Transcriptional impression concise across core cell lines
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The orange line corresponds to the highest apigenin 
concentration (100 µM), while the blue line represents the 
lowest concentration (10 µM). The red line signifies the 
average transcriptional impact across all concentrations. 
On the y-axis, the number of genes significantly affected by 
apigenin (FDR < 0.05) is depicted. Positive values indicate 
upregulation, whereas negative values denote downregulation. 
Apigenin exerts a considerable influence on gene expression 
across all four cell lines, even at the lowest concentration. The 
impact is contingent on dosage, with the number of affected 
genes escalating with increasing apigenin concentration. 
Furthermore, the impact is specific to each cell line, 
manifesting in differential gene expression patterns. Notably, 
MCF-7 cells exhibit the most pronounced response to apigenin, 
with over 1000 genes displaying differential expression at the 
highest concentration. In contrast, PC-3 cells exhibit the least 
impact, with fewer than 200 genes exhibiting differential 
expression at the highest concentration. Overall, the figure 
implies that apigenin elicits a broad and intricate effect on 
gene expression in cancer cells. This observation suggests 
the potential of apigenin as a promising therapeutic agent for 
cancer; however, further research is imperative to ascertain 
its efficacy and safety.
Introspect
Figure 5 serves as a critical visual aid, particularly for breast 
cancer research, as it illustrates the interrelationships among 
different cell lines affected by a perturbagen, the diversity of 
signatures, and the transcriptional activity scores (TAS). Thick 
black bars, representing TAS values equal to or exceeding 0.5, 
denote a perturbagen’s significant impact on breast cancer, 
whereas thinner black bars, indicating lower scores, suggest 
a lesser impact. The absence of a bar indicates either a very 
low TAS score or inaccessible data. Scores ranging from 80 
to 100 denote strong connectivity, while blue chords signify 
poor connectivity. Colored lines (chords) connecting cell lines 
depict connectedness, with these chords being shown only 
when the TAS score exceeds 0.5. Therefore, this visualization 
emphasizes perturbagens with high TAS scores and reveals 
connection patterns among various cell lines, aiding in the 
discovery of perturbagens with significant transcriptional 
impact on breast cancer. In the context of our investigation into 
apigenin-based drugs as potential casein kinase II inhibitors 
through hybrid in-silico methods, the absence of chords for 
specific cell lines may indicate minimal transcriptional effects 
or a lack of data. Consequently, it is crucial to consider both 
TAS scores and connectivity when selecting perturbagens 
relevant to breast cancer research.

Table 1 presents the results of drug-drug transcriptomic 
similarity analysis, ranking compounds based on their 
similarity scores to apigenin, a known casein kinase inhibitor. 
Results show promising candidates with high levels of 
transcriptome similarity, which may indicate that they share 
some action mechanisms. Apigenin, which has been confirmed 
to function as a casein kinase inhibitor, takes first place with 
a remarkable score of 99.99. Noteworthy compounds include 

Ag-14361 (PARP inhibitor) at the 6th rank, H-7 (PKA inhibitor) 
at the 7th rank, and Sb-218078 (CHK inhibitor) at the 10th rank, 
all exhibiting high similarity scores above 99.8. This suggests 
the likelihood of these compounds influencing similar gene 
expression patterns as apigenin. Further down the list, diverse 
compounds such as sinensetin (Cyclooxygenase inhibitor), 
lestaurtinib (FLT3 inhibitor), cosmosiin (Cytochrome P450 
inhibitor), and Ei-247 (IGF-1 inhibitor) also demonstrate 
substantial transcriptomic similarity. However, it is noteworthy 
that the list includes compounds like dextromethorphan, Ro-19-
460 and carteolol which, although displaying lower similarity 
scores, may present interesting avenues for exploration due to 
their distinct pharmacological profiles. In conclusion, the table 
underscores probable of recognized compounds for advanced 
investigation as apigenin-based drugs or as candidates with 
shared transcriptional impact mechanisms for therapeutic 
intervention in the context of casein kinase II inhibition, 
particularly for breast cancer.
Protein pre-preparation by PDB REDO also molecular 
docking
In terms of crystallographic refinement, the bond length RMS 
Z-score showed a slight improvement from 0.525 in the original 
dataset to 0.524 in the PDB-REDO refinement. Similarly, the 
R factor, which measures the agreement between observed 

Table 1: Results of transcriptomic similarity examination

S 
No. Rank Score Name Description

1 1 99.99 Apigenin Casein kinase inhibitor

2 6 99.87 Ag-14361 PARP inhibitor

3 10 99.77 Sb-218078 CHK inhibitor

4 14 99.67 Sinensetin Cyclooxygenase inhibitor

5 17 99.66 Lestaurtinib FLT3 inhibitor

6 21 99.37 Cosmosiin Cytochrome P450 inhibitor

7 40 98.9	 Escital
opram

Selective serotonin reuptake 
inhibitor (SSRI)

8 310 93.87 Dextrome
thorphan

Glutamate receptor 
antagonist

9 316 93.79 Ro-19-4605 GABA benzodiazepine site 
receptor inverse agonist

10 317 93.79 Carteolol Adrenergic receptor 
antagonist

Figure 5: Introspect: Cell line-specific reactions to perturbagens
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and calculated structure factors, decreased significantly 
from 0.2604 to 0.1721, indicating enhanced model accuracy. 
Additionally, the R-free factor, representing the agreement 
between observed and calculated structure factors in the test 
set, also exhibited improvement from 0.3189 to 0.2253.

Regarding model quality, several parameters were 
evaluated. The bond angle RMS Z-score decreased notably 
from 1.468 to 0.805, indicating improved bond angle accuracy 
after refinement. Moreover, various aspects of model quality, 
such as Ramachandran plot normality, coarse packing, 
rotamer normality, bump severity, fine packing, and hydrogen 
bond satisfaction, demonstrated enhancements in their raw 
scores following the PDB-REDO refinement process. These 
improvements suggest that the crystallographic model’s overall 
quality and reliability were enhanced through the refinement 
conducted by PDB REDO.

Overall, the results highlight the eff icacy of the 
crystallographic refinement process by PDB REDO in 
improving the accuracy and quality of the structural model, 
as evidenced by the favorable changes in validation metrics 
and model quality parameters. Based on the majority of the 
validation metrics, the PDB-REDO model shows significant 
improvements in various aspects compared to the original 
crystallographic refinement. This suggests a more accurate 
and well-defined structure with better geometry, packing, 
and Ramachandran/rotamer normality. However, the similar 
hydrogen bond satisfaction suggests that both models may 
represent the key functional interactions reasonably well.

Figure 6 provides a graphical depiction of model quality 
in relation to neighboring resolutions, offering a nuanced 
portrayal of structural modification assisted by PDB REDOR-
free plot. The model quality of the R-free plot is higher than 
the resolution neighbors for all three models. This means that 
the models are able to better predict the free energy of the 
protein when it is not part of the training data. With respect to 
R-free scores,  original models are on top, followed by PDB-
REDO models, and finally N-1597 models. This suggests that 
original models are better at capturing the true free energy 
of the protein.
•	 Ramachandran plot
A large proportion of residues in preferred areas of the 
Ramachandran plot are present in all three models. This 
means that the models are able to generate protein structures 
that are within the allowed conformational space for amino 
acid backbones.

The original models have the highest percentage of deposits 
in favored regions, followed by the PDB-REDO models and 
then the N-1597 models. This suggests that the original models 
are better at generating Ramachandran-compatible protein 
structures.
•	 Rotamer quality
The rotamer quality is similar for all three models. This means 
that the models are able to generate side-chain rotamers that 
are consistent with the observed rotamer distribution in protein 
structures.

•	 Overall
The original models appear to be the best of the three in terms 
of model quality, as they have the highest R-free scores, the 
highest% of residues in favored regions of the Ramachandran 
plot, and similar rotamer quality to other models. However, it 
is important to note that these are just three metrics of model 
quality, and there are other factors to consider when evaluating 
protein structure models

A total of 13 rotamers were adjusted to optimize the 
conformation of amino acid side chains within the CK2 
structure. Notably, no residues were found to have worsened 
fitting density, indicating the effectiveness of the refinement 
process in maintaining structural integrity.

Additionally, chiralities were adjusted for 0 residues, while 
45 water molecules were removed from the structure. No side 
chains or peptides required flipping during the refinement 
process.

However, the refinement process resulted in improved 
fitting density for 34 residues, suggesting better alignment of 
the protein structure with experimental data. Overall, these 
structural modifications carried out by the PDB REDO server 
contribute to enhancing the accuracy and reliability of the CK2 
protein structure, facilitating further research and analysis in 
the field of molecular biology.

The distribution of residues is advantageous, with most 
of them located in the preferred regions recognized for 
structurally sound conformations, as shown by the Kleywegt-
like plot with a Ramachandran Z-score of -1.549. In most cases, 
it is okay to have a small number of residues in the permitted 
zones since this indicates that the dihedral angles are somewhat 
off. By and large, the results of this research corroborate the 
high quality and structural integrity of the protein model, 
which is in line with what one would anticipate from a model 
of such a complex and intricate protein (Figure 7).

The Ramachandran analysis revealed a well-packed protein 
structure with 318 residues occupying preferred regions, as 
evidenced by a low Z-score of -1.549. This suggests high 
stability and proper residue placement, implying the likely 
functional correctness of the protein.

Figure 6: Model quality compared to resolution neighbors
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Molecular docking 
Table 2 shows outcomes from cavity detection by an online 
tool, which reveals the existence of five distinct cavities (C1–
C5). The Figure 7 shows the structures, which vary in volume 
and three-dimensional coordinates. The variation in cavity 
sizes and positions indicates possible ligand binding sites, 
which is useful for future molecular docking research and 
drug design efforts that aim to target these particular areas.

Table 3 displays the molecular docking data, which indicates 
the bound compounds, scores, and interacting amino acids 
for a variety of compounds to different pockets on a target 
protein. Notably, apigenin formed interactions with amino 
acids, including VAL31, TRP33, and LYS79, and it secured  the 
top position with a score of -6.1 in Pocket 2. Additionally, 
compounds like Ag-14361, Sb-218078, sinensetin, lestaurtinib, 
cosmosiin, and escitalopram demonstrated diverse binding 
affinities and interacting amino acids in different pockets. 
Particularly interesting are the compounds Ro-19-4603 and 
dextromethorphan (Figure 8), which displayed favorable scores 
of -7.5 and -10.0, respectively, in Pocket C1, interacting with 
key amino acids including LYS158 and VAL116. These findings 
suggest a range of potential binding sites and interaction 
strengths, providing valuable insights for further investigation 
and drug development efforts targeting the studied protein 
(Figures 9 and 10).

Figure 7: Kleywegt-like plot having Ramachandran Z-score-1.549 a) 
Preferred regions (318) b) Allowed regions (7)

Table 2: Outcomes of cavities detection by CB dock server

Cavity Volume (Å^3) Center (x, y, z) Cavity size (x, y, z)
C1 1283.68 27, 1.08, 19.44 15.12, 21.6, 18.36
C2 197.64 40.96, 11.88, 10.8 7.56, 10.8, 16.2
C3 187.92 28.08, -18.36, 5.4 5.4, 11.88, 10.8
C4 139.92 8.64, -20.52, 1.08 9.72, 6.48, 12.96
C5 130.68 12.96, -21.6, 20.52 8.64, 8.64, 6.48

Table 3: Outcomes of CB dock docking studies

S. 
No. Rank Name Pocket, score, chain and interacting 

amino acids
1

1 Apigenin

2, -6.1, A and  VAL31 TRP33 LEU70 
LYS71 PRO72 LYS75 ILE78 LYS79 
ILE82 ARG102 SER106 LYS107 
THR108 PRO109

2 6 Ag-14361 1, -9.0,  A and ARG43, THR119 

3 10 Sb-218078 1, -9.9,  A andARG43 ARG47 GLY48 
LYS49 TYR50 SER51 

4

14 Sinensetin

4, -6.1,  A andLEU249 GLY250 
THR251 ASP252 GLY253 VAL256 
TYR257 ARG278 ASP302 ARG306 
TYR307 ASP308 GLU311

5 17 Lestaurtinib 1, -9.9,  A and SER51 ASN117 

6
21 Cosmosiin

1, -8.3,  A and GLY48 LYS49 TYR50 
SER51 VAL53 ILE66 LYS68 VAL95 
PHE113 

7 40 Escital
opram

1, -8.3,  A and GLY46 ARG47 HIS160 
ASN161 

8 310 Dextrome
thorphan 4, -10.0,  A andSER51 ASP120 

9 316 Ro-19-4603 1, -7.5,  A and  GLY48 LYS49 TYR50 

10 317 Carteolol 1, -9.6,  A andASN117 TRP176

Figure 8: 2D structure of dextromethorphan

Figure 9: Outcomes of cavities detectionin CK2 by CB Dock server

Figure 10: Interaction of CK2 and lead dextromethorphan
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CONCLUSION
In conclusion, the comprehensive investigation presented 
in this research article unveils crucial insights into the 
potential of apigenin and its derivatives as CK2 inhibitors 
for breast cancer treatment, employing a hybrid in-silico 
approach. By analyzing the positive and negative correlations 
between apigenin and 17 other medications, the drug-drug 
transcriptome similarity study provides a useful framework 
for discovering new therapeutic options and learning how they 
work. The transcriptional impact analysis across four core cell 
lines demonstrates the significant dose-dependent influence of 
apigenin on gene expression, showcasing its broad and complex 
impact, particularly in breast cancer cells.

Reflective analysis using cell line-specific perturbagen 
responses provides a more complex picture of signature 
diversity, transcriptional activity scores, and connectedness 
across perturbagen-impacted cell lines, with a focus on breast 
cancer. Important for our search for apigenin-based medicines 
as possible CK2 inhibitors. This helps identify perturbagens 
with large transcriptional impacts.

The protein pre-preparation and molecular docking results, 
refined using PDB REDO, indicate substantial improvements 
in model quality, geometry, and packing compared to the 
original crystallographic refinement. The Kleywegt-like plot 
and cavity detection further affirm the structural integrity of the 
protein model, providing essential information for subsequent 
molecular docking studies. The results of molecular docking 
identify apigenin as a potent CK2 inhibitor and highlight 
other promising compounds like dextromethorphan, which 
demonstrates a favorable binding affinity with key amino acids.

In the context of drug-drug transcriptomic similarity 
analysis, probable of recognized composites for further 
investigation as apigenin-based drugs or as candidates with 
shared transcriptional impact mechanisms, particularly for 
breast cancer are studied. Lastly, the comprehensive conclusion 
brings together the findings from protein pre-preparation, 
molecular docking, and drug-drug transcriptomic similarity 
analysis, highlighting the promise of apigenin and related 
compounds as potential CK2 inhibitors for breast cancer 
therapy. This multifaceted approach, integrating computational 
and experimental methods, paves the way for future studies 
and the development of targeted therapies for breast cancer.
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