Revolutionizing HIV Treatment: Pioneering Ultra Performance Liquid Chromatography for Emtricitabine, Dolutegravir, and Tenofovir Tablet Validation

A Venkata Suresh Babu^{1*}, HK Sharma²

¹Nimra College of Pharmacy, Ibrahimpatnam, Vijayawada, Hyderabad, India. ²Sri Satya Sai University of Technology and Medical Sciences, Sehore, Madhya Pradesh, India.

Received: 04th November, 2023; Revised: 16th December, 2023; Accepted: 12th April, 2024; Available Online: 25th June, 2024

ABSTRACT

An uncomplicated and precise method has come into existence for the simultaneous quantification of emtricitabine, dolutegravir, and tenofovir in solid dosage forms. The chromatographic analysis utilized a Hibar100 column ($50 \times 2.1 \text{ mm}$, 2 µm) with a mobile phase of 0.1% OPA and acetonitrile in a 60:40 v/v ratio at a constant flow rate of 1.0 mL/min, maintaining a temperature of 30°C. The perfected wavelength at 260.0 nm revealed retention times of 1.951, 1.180, and 1.584 minutes for dolutegravir, emtricitabine, and tenofovir, respectively.

Keywords: Emtricitabine, Dolutegravir, Tenofovir, UPLC.

International Journal of Pharmaceutical Quality Assurance (2024); DOI: 10.25258/ijpqa.15.2.37

How to cite this article: Babu AVS, Sharma HK. Revolutionizing HIV Treatment: Pioneering Ultra Performance Liquid Chromatography for Emtricitabine, Dolutegravir, and Tenofovir Tablet Validation. International Journal of Pharmaceutical Quality Assurance. 2024;15(2):784-789.

Source of support: Nil.

Conflict of interest: None

INTRODUCTION

Ultra-performance liquid chromatography (UPLC) revolutionizes analytical separation science by advancing speed, sensitivity, and resolution with fine particles and higher flow rates. This article explores UPLC's potential in pharmaceutical analysis, aiming to accelerate analysis while maintaining quality compared to conventional high-performance liquid chromatography (HPLC) methods. Emtricitabine, an NRTI, is pivotal in human immunodeficiency virus (HIV) treatment, inhibiting reverse transcriptase and preventing HIV-1 with emtricitabine alafenamide. Tenofovir, an antiviral derived from adenosine monophosphate, is available as tenofovir disoproxil and tenofovir alafenamide since 2008, improving oral bioavailability. Dolutegravir, marketed as Tivicay, treats HIV-1 in mature persons and adolescents ≥ 12 years weighing \geq 40 kg, with 52.6 mg of dolutegravir sodium equivalent to 50 mg of dolutegravir free acid. FDA approved dolutegravir on August 12, 2013.¹⁻¹⁶ The structures of emtricitabine, tenofovir, and dolutegravir are shown in Figures 1, 2, and 3, respectively (Figures 1-3).

MATERIALS AND METHODS

Chemicals

Acetonitrile, HPLC Water, N(CH₂CH₃), KH₂PO₄, and H₃PO₄ were obtained from Merck India Ltd, Mumbai, India. The APIs

*Author for Correspondence: suresh158@gmail.com

of emtricitabine, tenofovir, and dolutegravir standards were obtained from Hetero Labs, Hyderabad.

The Instrumentation

The Waters Acquity System features binary pumps, a TUV detector, and an autosampler seamlessly integrated with Empower 2 Software. ¹⁷⁻²⁰

Method Optimization

After thorough experimentation with various mobile phase compositions, 0.1% OPA: Acetonitrile in a 60:40 v/v ratio emerged as the most effective choice for optimal separation and analytical performance. Utilizing a UV spectrum wavelength of 260 nm, the developed UPLC method enabled robust absorbance of both drugs, facilitating their accurate quantification. This optimized method was smoothly applied for the simultaneous evaluation of the combined drugs in vitro, demonstrating its efficacy for precise and efficient analysis.²¹

Figure 1: Structure of emtricitabine

Figure 2: Structure of tenofovir

Figure 3: Structure of dolutegravir

Validation Procedure

The analytical method underwent rigorous authentication according to ICH guidelines, ensuring reliability and quality. It covered specifications such as system suitability, precision, accuracy, linearity, robustness, limit of detection (LoD), limit of quantitation (LoQ), forced degradation, and stability, meeting industry standards for pharmaceutical analysis.²²⁻³⁰

Validation

System suitability specifications

System suitability was evaluated by taking the necessary steps with standard solutions of tenofovir, emtricitabine, and dolutegravir. Six consecutive injections were made, and key specifications like peak tailing, resolution, and USP plate count were calculated. The %RSD for the area of these injections was required to be $\leq 2\%$ to ensure system stability and consistency for accurate quantification of the compounds.

Degradation studies

Degradation studies are crucial for assessing pharmaceutical stability and behavior under various conditions. These include forced degradation, thermal, photostability, hydrolysis, oxidation, and pH stability tests. The aim is to identify degradation pathways and ensure drug safety and efficacy. Analytical techniques like HPLC, MS, and spectroscopy monitor chemical changes, detect degradation products, and evaluate stability under stress conditions. These studies inform drug formulation, storage conditions, and regulatory compliance to maintain product quality over time.^{31,32}

RESULTS AND DISCUSSION

Optimized Method

The analysis utilized a mobile phase consisting of 0.1% H₃PO₃ and CH₃CN in a 60:40 v/v ratio, with a flux of 1-mL/min. A Hibar 100 x 2.1 mm column with 2 µm particles was employed. Detection occurred at an observation of 260.0 nm, with the column temperature held at 30°C. Each injection volume was 1-mL, and the total run time for the analysis was 4 minutes. The diluent used was a mixture of water and acetonitrile in 50:50 v/v ratio (Figure 4).

Figure 5: Chromatogram for system suitability

Figure 6: Calibration curve of tenofovir

Figure 7: Calibration curve of emtricitabine

Figure 8: Calibration curve of dolutegravir

Figure 9: Linearity 100% chromatogram

UPLC Analysis of Emtricitabine, Dolutegravir, and Tenofovir Tablets

	Table 1: System relevancy results												
S. No.	Emtricitabine			Tenofovir				Dolutegravir					
Inj	Run time (min)	TP	Tailing	Run time (min)	TP	Tailing	RS	Run time (min)	TP	Tailing	RS		
1	1.174	2776	1.24	1.541	5151	1.27	4.1	1.87	5991	1.32	3.5		
2	1.176	2886	1.25	1.55	5185	1.28	4	1.878	6099	1.32	3.4		
3	1.18	2919	1.26	1.555	5058	1.28	4	1.907	5975	1.34	3.6		
4	1.181	2948	1.25	1.556	5102	1.28	4.1	1.908	6145	1.31	3.5		
5	1.186	2854	1.25	1.564	5079	1.27	4	1.924	6032	1.32	3.5		
6	1.199	2851	1.25	1.584	5181	1.28	4.1	1.951	6022	1.33	3.6		

	Table 2: Linearity results											
	Tenofovir	•	Emtricita	bine	Dolutegravir							
<i>S. No.</i>	Conc (µg/mL)	Peak area	Conc (µg/mL)	Peak area	Conc (µg/mL)	Peak area						
1	6.25	56334	25	378226	3.125	152278						
2	12.5	115591	50	755585	6.25	312586						
3	18.75	167812	75	1164216	9.375	462895						
4	25	228769	100	1531036	12.5	607432						
5	31.25	284851	125	1865225	15.625	748804						
6	37.5	336908	150	2247311	18.75	907578						

Fable	3:	System	precision	results
able	э.	System	precision	resuits

S. No	Area of tenofovir	Area of emtricitabine	Area of dolutegravir
1	227299	1519830	610546
2	225249	1515637	595582
3	227736	1492055	604272
4	225123	1519364	605553
5	222602	1497910	612308
6	224164	1491701	604130
Mean	225362	1506083	605399
S.D	1924.1	13616.7	5890.7
%RSD	0.9	0.9	1

Table 4: Repeatability results								
S. No	Area of tenofovir	Area of emtricitabine	Area of dolutegravir					
1	224464	1494424	598949					
2	226184	1492275	607672					
3	225436	1512857	614475					
4	225043	1509815	608881					
5	223335	1515580	606506					
6	224763	1491540	597201					
Mean	224871	1502749	605614					
S.D	960.1	11148	6471.8					
%RSD	0.4	0.7	1.1					

	Table 5: Intermediate precision results									
S. No	Area of tenofovir	Area of emtricitabine	Area of dolutegravir							
1	224995	1486682	486933							
2	224953	1493336	478806							
3	225056	1498890	490580							
4	222620	1497820	479690							
5	225815	1481720	483068							
6	222583	1503116	503971							
Mean	224337	1493594	487175							
S.D	1381.2	8067.3	9345.5							
%RSD	0.6	0.5	1.9							

Figure 11: Repeatability chromatogram

Figure 12: Intermediate precision chromatogram

Figure 13: Accuracy 100% chromatogram

UPLC Analysis of Emtricitabine, Dolutegravir, and Tenofovir Tablets

	Table 6: Accuracy results											
	Tenofovir				Emtricita	bine			Dolutegra	wir		
Level (%)	Amount Spiked	Amount recovered	Amount recovered % Mean Recovery %Recovery		Amount Spiked	Amount recovered	% Recovery	Mean % Recovery	Amount Spiked	Amount recovered	% Recovery	Mean % Recovery
	(µg/mL)	(µg/mL)	_		(µg/mL)	(µg/mL)	_		(µg/mL)	(µg/mL)	-	
	12.5	25	101.16		50	100	98.42		25	25	101.16	
50	12.5	25	98.45		50	100	98.96		25	25	98.45	
	12.5	25	99.59		50	100	99.71		25	25	99.59	
	25	25	100.1		100	100	98.51		50	25	100.1	
100	25	25	99.58	99.64	100	100	101.21	99.48	50	25	99.58	99.64
	25	25	98.85		100	100	100.71		50	25	98.85	
	37.5	25	98.98		150	100	98.34		75	25	98.98	
150	37.5	25	99.86		150	100	99.11		75	25	99.86	
	37.5	25	100.2		150	100	100.33		75	25	100.2	

Table 7: Sensitivity results

Sample	LoD (µg/mL)	$LoQ(\mu g/mL)$
Tenofovir	0.06	0.18
Emtricitabine	0.47	1.44
Dolutegravir	0.11	0.34

Table 8: Robustness results											
S. No.	Condition	%RSD dolutegravir	%RSD emtricitabine	%RSD tenofovir							
1	F.R (-) 0.9 mL/min	0.4	0.8	0.8							
2	F.R (+) 1.1 mL/min	1.3	0.40	0.6							
3	M.P (-) 65 W:35M	1.5	0.20	1.4							
4	M.P (+) 55 W:45M	0.2	1.00	1.1							
5	(-) 25°C	0.2	0.9	0.5							
6	(+) 35°C	1	0.7	1.4							

Figure 14: LoD chromatogram for standard

Figure 15: LoQ chromatogram for standard

Table 9: Assay results

S. No	Tenofovir			Emtricitabine			Dolutegravir		
	Stnd Area	Sample area	%Assay	Stnd Area	Sample area	%Assay	Stnd Area	Sample area	%Assay
1	227299	224464	99.40	1519830	1494424	99.03	1681191	1693761	100.31
2	225249	226184	100.16	1515637	1492275	98.89	1693923	1698036	100.56
3	227736	225436	99.83	1492055	1512857	100.25	1699326	1709571	101.25
4	225123	225043	99.66	1519364	1509815	100.05	1687072	1689419	100.05
5	222602	223335	98.90	1497910	1515580	100.43	1679077	1707150	101.10
6	224164	224763	99.53	1491701	1491540	98.84	1680435	1675492	99.23
Avg	225362	224871	99.58	1506083	1502749	99.58	1686837	1695572	100.42
Stdev	1924.1	960.1	0.43	13616.7	11148.0	0.739	8238.0	12493.5	0.740
%RSD	0.9	0.4	0.4	0.9	0.7	0.7	0.5	0.7	0.7

	Table 10: Degradation results											
C M	Degradation	Tenofovir		Emtricitabine		Dolutegravir						
<i>S. NO</i> .	condition	%Undegraded	%Degraded	%Undegraded	%Degraded	%Undegraded	%Degraded					
1	Acid	95.98	4.02	96.21	3.79	96.06	3.94					
2	Alkali	96.73	3.27	96.42	3.58	96.26	3.74					
3	Oxidation	95.16	4.84	95.62	4.38	95.79	4.21					
4	Thermal	97.64	2.36	97.87	2.13	97.81	2.19					
5	UV	98.40	1.60	98.65	1.35	98.27	1.73					
6	Water	99.34	0.66	99.59	0.41	99.39	0.61					

Figure 16: Chromatogram for working standard solution

Figure 17: Chromatogram for working sample solution

Method Validation

System suitability

System suitability specifications were determined and met the required standards, ensuring reliable performance of the chromatographic system (Figure 5, Table 1).

Linearity

The calibration curves for tenofovir, emtricitabine, and dolutegravir showed good linearity with high correlation coefficients, indicating accurate quantification over the tested concentration ranges (Figures 6-9, Table 2).

Precision

The method showed excellent precision with low %RSD values for both repeatability and intermediate precision tests, confirming the method's reliability (Figures 10-12, Tables 3-5).

Accuracy

Recovery studies demonstrated the method's accuracy, with average % recoveries close to 100% for all three drugs (Table 6, Figure 13).

Detection and quantification limits

The LoD and LoQ values were low, allowing for the sensitive detection and quantification of the analytes (Figures 14-15, Table 7).

Robustness

The method proved to be robust, with small changes in chromatographic conditions not significantly affecting the results (Table 8).

Assay of formulation

The %assay values for tenofovir, emtricitabine, and dolutegravir were close to 100%, demonstrating the method's applicability for routine quality control of tablet formulations (Figures 16 and 17, Table 9).

Degradation studies

Forced degradation studies indicated the method's capability to detect degradation products, confirming its stability-indicating nature (Table 10).

CONCLUSION

A precise method has come into existence for the simultaneous estimation of dolutegravir, emtricitabine, and tenofovir in tablet form. Retention times were 1.951, 1.180, and 1.584 minutes, respectively, with %RSD for system precision at 1.0, 0.9, and 0.9%. Method precision %RSD values were 1.1, 0.7, and 0.4%. %Recovery rates were 100.04, 99.48, and 99.58%. LoD/LoQ values (ppm) were emtricitabine: 0.47/1.44, dolutegravir: 0.11/0.34, tenofovir: 0.06/0.18. Regression equations were tenofovir: y = 9033x + 651.7, emtricitabine: y = 14988x + 10437, dolutegravir: y = 33277x + 12509. Reduced retention times indicate a simple and cost-effective method suitable for routine standard control in industries.

REFERENCES

- Ramyasree A, Umadevi S. An efficient RP-HPLC-PDA Method for Estimating Dolutegravir and Lamivudine in Combined Pharmaceutical Formulations using a Box-Behnken Design Approach. International Journal of Pharmaceutical Quality Assurance. 2023;14(3):507-513. DOI: 10.25258/ijpqa.14.3.11
- Chandrudu J, Gandhimathi R. Development, Optimization, and Validation of a RP-HPLC Method with PDA Detection for the Concurrent Quantification of Emtricitabine, Tenofovir Alafenamide, and Dolutegravir in Both Bulk and Pharmaceutical Dosage Forms. International Journal of Pharmaceutical Quality Assurance. 2023;14(3):487-493. DOI: 10.25258/ijpqa.14.3.09
- Swartz M. E., Ultra Performance Liquid Chromatography (UPLC): An Introduction, Separation Science Re-Defined, LCGC Supplement, p. 8-11(MAY 2005).
- 4. Babu, A.V.S., Sharma, H.K. Stability Indicative and Cost

Effective Analytical Method Development and Validation Of Favipiravir and Oseltamivir in Bulk And Pharmaceutical Dosage Form By Using Rp-Hplc Journal of Drug and Alcohol Research., 2022, 11(9), 236196

- Babu, A.V.S., Sharma, H.K. Method Development And Validation Of Ubrogepant In Bulk And Pharmaceutical Dosage Form By Using Rp-Hplc. (2022). Journal of Pharmaceutical Negative Results, 7690-7696.
- Babu, A.V.S., Sharma, H.K.Method Development AndValidation Of Ritonavir And Nirmatrelvir In Tablet Dosage Form By Using RP-High Performance Liquid Chromatography, Eur. Chem. Bull. 2023, 12(Special Issue 5), 815 – 825.
- 7. Jerkovich A.D., Mellors J.S., and Jorgenson J.W., The use of micrometer-sized particles in ultrahigh pressure liquid chromatography. LCGC. 2003; 21(7): 600-610.
- 8. MacNair J.E., Lewis K.C. And Jorgenson J.W., Ultrahighpressure reversed-phase liquid chromatography in packed capillary columns. Anal. Chem. 1997; 69: 983–989.
- 9. Van Deemter JJ, Zuiderweg EJ, Klinkenberg A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 1956; 5: 271–289.
- Lars Y. and Honore H.S., On-line turbulent-flow chromatography– high-performance liquid chromatography–mass spectrometry for fast sample preparation and quantitation J. Chromatogr., 2003; A 1020: 59–67.
- McLoughlin D.A., Olah T.V., and Gilbert J.D., A direct technique for the simultaneous determination of 10 drug candidates in plasma by Liquid Chromatography atmospheric pressure chemical ionization mass spectrometry interfaced to a prospect solid-phase extraction system. J. Pharm. Biomed. Anal. 1997; 15: 1893–1901.
- 12. WWW.Waters.Com/Acquitycolumns
- Goodwin L, White SA, Spooner N. Evaluation of ultraperformance liquid chromatography in the bioanalysis of small molecule drug candidates in plasma.J. Chromatogr. Sci. 2007; 45(6): 298–304.
- Swartz M., Ultra Performance Liquid Chromatography. LCGC. 2005; 23(1): 46–53.
- 15. Broske A.D., et al., Agilent Technologies application note 5988-9251EN (2004).
- 16. Michael E. Swartz and Brian J. Murphy. Ultra performance liquid chromatography: tomorrow's HPLC technology today as published in LPI- June 2004.
- Michael E. Swartz, UPLC: An Introduction and Review Waters Corporation, Milford, Massachusetts, USA, Journal of Liquid Chromatography & Related Technologies, 2005; 28: 1253–1263.
- 18. Gui-Ling Yang, Li-Wei Yang2, Yong-Xue Li, Hui Cao, Wen-Liang

Zhou, Zhi-Jian Fang, et al. Applications of Ultra-Performance Liquid Chromatography to Traditional Chinese Medicines. J. Chromatogr Sci., 2008; 48: 18-21.

- Kaushal.C, Srivatsava.B, A Process of Method Development: A Chromatographic Approach. J Chem Pharm Res, Vol.2, Issue 2, 519-545, (2010)
- 20. Green JM. A Practical guide to analytical method validation, Anal Chem (1996) 305A-309A
- ICH, Validation of analytical procedures: Text and Methodology. International Conference on Harmonization, IFPMA, Geneva, (1996)
- 22. IUPAC. Compendium of Chemical Terminology, 2nd edn. (The Gold Book). PAC69, 1137 (1997). Glossary of terms used in computational drug design (IUPAC Recommendations.
- 23. K. D. Tripathi, Essentials of Medical Pharmacology, 6th Edition, Jaypee brother's medical publishers (P) LTD, p-254-255.
- 24. Indian Pharmacopoeia, Indian Pharmacopeial Commission, Controller of Publication, Government of India, Ministry of health and Family Welfare, Ghaziabad, India, 2 (2010) 1657-1658.
- 25. British Pharmacopoeia, The British Pharmacopeial Commission, the stationary office, UK, London, 1408-1409 2 (2011).
- 26. Link to Drugbank Favipiravir
- 27. Link to Drugbank Oseltamivir
- 28. Syeda Shafaq et al.., Method Development and Validation for Simultaneous Estimation of Emtricitabine, Tenofovir Af, Dolutegravir in Its Bulk and Pharmaceutical Dosage Form by Rp-Hplc Method, Wjpis, 2019; 5(11): 179-186.
- 29. A Prabhakar Reddy et al.., Development and Validation of Rp-Hplc-Pda Method for The Simultaneous Estimation of Emtricitabine, Tenofovir Disoproxil Fumarate and Rilpivirine Hydrochloride in Bulk, Pharmaceutical Dosage Forms And In Dissolution Samples, Iajpr,Vol 4, Issue 11, 2014.
- 30. Somanathan.et al.., Analytical Method Development and Validation of Stability Indicating assay method of analysis for Dolutegravir/Lamivudine/Tenofovir Disoproxil Fumarate tablets using High Performance Liquid Chromatography, Research J. Pharm. and Tech. 2021; 14(5):2434-2439.
- 31. Ramreddy Godela et al., Concurrent estimation of lamivudine, tenofovir disoproxil fumarate, and efavirenz in blended mixture and triple combination tablet formulation by a new stability indicating RP-HPLC method Ramreddy Godela, Vijayalakshmi Kammari, Sowjanya Gummad, Godela et al. Future Journal of Pharmaceutical Sciences (2021) 7:94.
- 32. Yusuff Ismai et al., A New Stability Indicating RP-HPLC Method Development and Validation for the Simultaneous Estimation of Dolutegravir and Rilpivirine in Bulk and its Dosage Forms, Iranian Journal of Pharmaceutical Sciences 2019: 15 (4): 53-72.