
INTRODUCTION
Based on their origins and features, skin wounds may be 
divided into two main types. Firstly, acute wounds arise from 
various situations, including surgical procedures, traumatic 
events, exposure to radiation, abrasions, and superficial burns. 
On the other hand, chronic wounds develop due to underlying 
health issues like diabetic ulcers, pressure ulcers resulting from 
prolonged immobility, and venous leg ulcers linked to venous 
insufficiency.1 Proper differentiation between these types is 
crucial for providing tailored care and effective management 
strategies to maximize wound healing results. To facilitate cell 
growth and promote efficient healing, it is essential to perform 
debridement to remove any debris or damaged tissue from the 
wound. Subsequent meticulous cleaning and swabbing of the 

wound site are imperative to prevent infections and maintain 
a sterile environment conducive to healing.2 The application 
of a suitable dressing is pivotal, serving as a protective barrier 
against infections and expediting the overall healing process. 
Dry gauze is a popular choice in modern medical practices due 
to its affordability and widespread availability. Nonetheless, dry 
gauze has limitations such as the potential for bacterial growth, 
risk of wound dehydration, and the delicate nature of newly 
formed epithelium, which could be prone to reinjury during 
dressing changes.3 Recognizing these challenges, the field of 
wound care has witnessed the development of more advanced 
dressings with enhanced functionalities. Advanced materials 
like hydrocolloids and hydrogels have been engineered to 
facilitate gas exchange, absorb exudate, maintain a moist 
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wound environment, and prevent microbial colonization.4 In 
addition to offering antimicrobial properties, these modern 
dressings contain biological components that promote proper 
matrix formation, support local cell migration, and stimulate 
cell proliferation at the wound site.5 The continuous evolution 
of wound dressings reflects ongoing efforts to optimize healing 
processes and improve patient outcomes in the field of wound 
care, showcasing a commitment to innovation and enhancing 
the overall standard of care in managing skin injuries.6

Wound Healing Process
Hemostasis/bleeding, inf lammation, proliferation, and 
remodeling are the four discrete steps that comprise the 
overall wound healing process as seen in Figure 1. Vascular 
constriction is a crucial first stage in the process of hemostasis 
since it causes the blood to coagulate and subsequently slow 
down its flow to the wounded tissue location.7 Following 
hemostasis, the inflammation stage takes charge, facilitating 
the influx of nutrient-rich blood to the area of damage, thereby 
promoting the expansion of the wounded tissue.8 This crucial 
period sets the foundation for the subsequent phases, ultimately 
culminating in the intricate process necessary for full tissue 
regeneration and restoration.9

Types of Wound Dressing
Due to the potential risk of heightened infection levels, the 
traditional view perceived wound dressing as deviating 
from proper wound care practices. These research studies 
have illuminated how wound dressings play a crucial role 
in facilitating cellular migration, proliferation, and other 
essential processes essential for overall wound improvement.10 
Furthermore, scientific evidence solidly backs the idea that 
the presence of scabs forming over dry wounds can impede 
epidermal renewal, heighten discomfort, and foster the 
development of scarring.11 According to this correlation, 
dressings play a crucial role in the healing process as they 
help maintain the optimal moisture level in the wound bed, 
which is essential for effective healing. Factors such as the 
location, size, and severity of the wound must be carefully 
considered when choosing the appropriate dressing for effective 
treatment.12 Figure 2 describes the structure of wound dressing 
and its process

It is essential to categorize the more than 3000 different 
types of wound dressings on the market into four main 
groups: Bioactive, advanced, interactive, and passive.13 
These dressings are known for their limited ability to control 
the amount of moisture present, often leaving the wound 
bed exposed to potential harm from mechanical forces and 
bacterial infections.14 Even with these drawbacks, taking off 
the bandages can sometimes result in further harm to the 
wound due to the risk of causing mechanical damage during 
removal. This dilemma has led to a preference for low-adherent 
dressings that are designed to minimize sticking to the wound 
bed while still enabling wound exudate to pass through and 
maintain adequate hydration levels.15 Particularly suitable for 
smaller wounds, this type of dressing has proven to be highly 
effective. Bandages, which come in a variety of compositions 

from natural fibers to synthetic materials, are a typical example 
of a passive dressing when used in conjunction with other 
wound care treatments like gauze or tapes. Because of their 
great flexibility, interactive dressings are widely appreciated.16  

This dressing stands out from others due to its ability to 
contain exudate while protecting the wound from further 
damage. Additionally, hydrogel dressings, known for creating 
a moist wound environment, aiding in exudate absorption, 
and promoting autolysis and debridement, are particularly 
useful for managing necrotic wounds.17 They offer versatility 
as they can be used for various wound types with minimal to 
no fluid discharge, showcasing their effectiveness in wound 
care practices. Advanced dressings are made of hydro-fibers, 
hydrocolloids, and alginates, which can promote wound 
healing by preserving moisture in the wound environment.18 

Hydrocolloids are semipermeable film carriers coupled with 
materials such as sodium carboxymethylcellulose, elastomers, 
pectin, and gelatin to generate a flat dressing. Hydrocolloid gels 
are commonly applied to the surface of wounds to promote 
healing and can be used for dry wound rehydration. They 
are simultaneously impervious to microorganisms and hold 
both air and water vapor. The biodegradability, longevity, 
and user-friendliness of these dressings are further appealing 
attributes.19 It has also been demonstrated that this class of 
dressings lessens discomfort without macerating or depriving 
the epidermis. Hydrocolloids have proven to be exceptionally 
effective in various aspects, including not only preventing 
infections but also hastening the healing process of wounds due 
to their remarkable special qualities.20 These novel dressings 

Figure 1: Breakdown of the complete wound healing process

Figure 2: Structure of wound dressing and its process
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offer benefits beyond conventional methods by using unusual 
substances such as alginates, which are calcium and alginic 
acid sodium salts that exist naturally. Alginates serve as a 
gel-like substance that efficiently absorbs excessive fluids 
discharged from the wound, thereby expediting the healing 
journey.21 
Innovations in Material Science: The Electrospinning 
Technique
Nano- and micro-fibrous substrates can be made by the material 
science process of electrospinning, which employs polymers. 
The process includes polarization and the production of the 
Taylor cone by extruding a viscoelastic droplet and applying 
a high-voltage positive charge. The charged jet solidifies into 
fibers, forming the fibrous substrates.22 In industries like 
environmental research and biology, this procedure is essential 
for creating substrates with structural integrity and a wide 
range of uses. Fiber strands assemble on the anode to form a 
continuous mat, as seen in Figure 3. System parameters such 
as solution viscosity, solvent volatility, polymer molecular 
weight, and solution conductivity, in addition to environmental 
factors, govern the mechanical properties and fiber structure 
of electrospun fibers.23 The needle tip-collector distance, feed 
rate, and applied voltage are examples of process parameters. 
Scaffolds are carefully created using the novel technique of 
electrospinning, also known as electrostatic spinning, and 
are employed in a variety of medicinal applications.24 An 
electrospinning device, which is required for this process, is 
composed of three basic components: A high-voltage source, 
a collector, and a supply system. The supply system, which 
typically consists of a metallic pointed end attached to a 
syringe filled with molten polymers for melt electrospinning 
or a polymer solution for suspension electrospinning, is a 
crucial part of the equipment.25 Because of its intricate setup, 
electrospinning is considered a state-of-the-art method in the 
field of advanced medical treatments. It allows for the precise 
creation of non-woven scaffolds, each of which is tailored to 
meet specific therapeutic requirements.26 A high voltage of 
between 5 and 60 kV is applied to both the metallic needle 
and metallic collector, which are crucial components in the 
electrospinning process. The molten or polymer solution 
droplet changes by producing electric charges at the needle’s 
surface. When the electric force surpasses the surface tension 
of the droplet, a polymeric filament is discharged from the 
cone’s tip onto the awaiting collector. As the new filament takes 
shape, As the initial droplet dries up, a new one appears to 
take its place, restarting the filament manufacturing cycle. The 
network of unwoven fibers expands on the collector’s surface 
with each filament deposition, causing the polymeric structure 
to enlarge gradually.27 Hassiba et al. claim that the size and 
properties of the electrospun nanofibers may be adjusted by 
adjusting a range of operating parameters, including voltage 
settings, needle-to-collector distance, and environmental 
factors, including temperature and humidity.28 Furthermore, 
the nanofibrous filament aligns with the main fiber axis due 
to an electrostatic force created by the voltage applied during 

the electrospinning process.29 This alignment further enhances 
the structural integrity and functionality of the nanofibrous 
network, making it more conducive to promoting effective 
wound-healing processes. The fluid absorption capacity and 
water vapor transfer rates play a vital role in determining the 
effectiveness of nanofibers when used in wound dressings.30 
These characteristics not only showcase the material’s 
innovative nature but are also essential factors for assessing 
the dressing’s ability to regulate the ideal moisture level crucial 
for promoting proper cell growth and function within the 
wound area.31 By carefully considering a dressing’s capacity 
to maintain optimal moisture levels, healthcare providers can 
ensure an environment conducive to the growth and activity of 
epithelial and fibroblast cells, which are pivotal in the wound 
healing process.32 Therefore, an in-depth understanding of 
how these characteristics influence the wound environment 
is key to selecting the most suitable dressing that can support 
and expedite the healing process through its ability to manage 
moisture effectively, facilitating tissue regeneration and proper 
wound closure on time.33

Table 1 describes the natural polymers and their properties 
as candidate materials for electrospinning
Natural and Synthetic Polymer Dressings

Natural polymer dressings
As shown in Table 1, non-woven electrospun meshes have 
been creatively created and demonstrated to meet the unique 
needs of localized skin regeneration by utilizing a wide range 
of natural biopolymers.34 These naturally occurring polymers 
can be broadly classified into two categories: carbohydrates 
and proteins. Well-known protein-based polymers, including 
collagen, elastin, gelatin, and silk fibrinogen, have attracted 
a lot of attention from researchers studying wound healing. 
On the other hand, carbohydrate-based polymers, including 
cellulose, hyaluronic acid, dextran, and chitosan, have also 
gained increasing recognition because of their exceptional 
biocompatibility, minimal antigenicity, and beneficial 
bioactivity that encourages cell adhesion and proliferation.35 
Notably, the extracellular matrix (ECM) that was originally 
present in the electrospun dressing materials generated with 
these natural polymers is chemically comparable to it, which 
enhances the dressing materials’ ability to promote skin 
regeneration.36 However, natural polymers display complex 
chemical configurations and a broad range of physicochemical 
characteristics due to their varied origins and structural 
differences.37 For example, the molecular weights of certain 
natural polymers influence their viscosity, which in turn 
affects how quickly they dissolve and degrade in solution.38 
When trying to generate uniform and smooth fiber structures 
during the electrospinning process, the complexities resulting 
from the different characteristics of natural polymers 
provide obstacles.39 Furthermore, natural polymer fibers’ 
low mechanical strength poses a barrier to their use as 
environmentally friendly materials for wound dressings. These 
intrinsic intricacies highlight the necessity of more research 
and development in the application of natural biopolymers for 
improved wound care remedies.40
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Protein-based electrospun wound healing dressings
The most widely employed proteins for electrospun wound 
healing applications are collagen, silk fibroin, and gelatin; 
due to their unique properties, these three proteins have all 
been thoroughly investigated. Gelatin, or partially hydrolyzed 
collagen, is a crucial component of skin and connective tissue.41 
It possesses several advantageous biological characteristics. 
For example, gelatin is a useful substance for wound healing 
applications since it has been shown to activate macrophages, 
biodegrade quickly, have significant hemostatic effects, and not 
be immunogenic.42 Researchers led by Butcher have explored 
the impact of solution parameters on the mechanical properties 
and fiber morphology of gelatin electrospun fibers, noting 
that gelatin sourced from cold-water fish presents distinct 
rheological characteristics and a lower gelation temperature 
due to its reduced proline and hydroxyproline content.43 In 
the quest for homogenous and bead-free scaffolds, Cheng and 
colleagues optimized solution parameters to enhance fluid 
drainage and biocompatibility by controlling the evaporative 
water loss during the electrospinning process of gelatin/PLLA 
poly(L-lactide) fibers.44 Furthermore, Jalaja and the team 
demonstrated that electrospinning gelatin in a water-based 
solution could reduce toxicity and improve cell viability, with 
the possibility of cross-linking using oxidized sucrose for 
added stability.45 Considering silk fibroin, another protein 
that is frequently utilized for scaffold electrospinning, its 
remarkable mechanical and biological characteristics have 
elevated it to the status of a potential biomaterial for a range 
of tissue engineering uses. Silk fibroin generated from insects 
and spiders has shown promise in the reconstruction of many 

different tissues, such as the trachea, bladder, skin, vascular, 
bone, and neural. Researchers added sulfate groups to silk 
fibroin to improve the scaffolds’ anticoagulant properties and 
stimulate the development and proliferation of new blood 
vessels. The most prevalent protein in the human body and an 
essential part of the extracellular matrix, collagen, is essential 
to the use of electrospun nanofibers.46 
Electrospinning synthetic polymer wound dressing
in nanofiber electrospinning methods, synthetic polymers 
with exceptional mechanical qualities, thermal stability, and 
processing flexibility are frequently used. It is possible to create 
nanofibers that properly balance the properties of mechanical 
strength and degradability by modifying the solvent type 
and the molecular weight of the polymer to meet the unique 
needs of wound healing.29 Numerous synthetic polymers, each 
with their benefits, are used in wound healing applications.  
Table 2 provides a thorough analysis of the benefits and 
drawbacks of several synthetic polymers that are often utilized 
in wound healing applications.

These include polyvinyl alcohol (PVA), polyvinyl 
chloride (PEO), poly(lactide) (PCL), polylactic acid (PLA), 
and polyurethane (PU). It is possible to effectively accelerate 
the wound-healing process by combining various polymers. 
Combining different polymers offers advantages as well as 
the ability to improve wound healing.47 Because of its great 
biocompatibility and slow degradation in the human body, 
PCL is widely used as an implanted medication. Because 
PCL and polyethylene glycol (PEG) are so versatile, they may 
be copolymerized to create very hydrophilic, non-toxic, and 

      Figure 3: Schematic illustration of the electrospinning process for nanofiber fabrication
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biocompatible copolymers. Researchers have successfully 
engineered biodegradable nanofibers by synthesizing a tri-
block polymer electrospinning nanofiber comprising PCL 
and PEG. This novel nanofiber platform can serve as an 
effective carrier for medications in wound dressings. Notably, 
PCL-PEG-PCL (PCEC) nanofibers have been instrumental 
in enhancing wound healing rates by accommodating the 
controlled release of curcumin (CU). The incorporation of CU 

in the nanofibers resulted in modifications to their physical and 
chemical properties without compromising biocompatibility. 
Furthermore, the PCEC/CU nanofiber pad demonstrated 
remarkable antioxidant qualities and minimal cytotoxicity, 
leading to a notable 20% acceleration in skin wound healing 
post-surgery. Potential applications in wound dressing 
and healing interventions make this invention particularly 
promising. Building on the success of PCL, scientists have 

Table 1: The characteristics of natural polymers as potential electrospinning materials

Natural polymers Advantageous properties Disadvantageous properties

Hyaluronic
acid

Strong mechanically, biocompatible, promoting cell migration, differentiation, 
and proliferation, controlling metabolism and the extracellular matrix’s structure, 
and preserving the hydration, elasticity, and wetness of the skin

very low amounts of high viscosity are 
linked to high molecular weight

Chitosan In addition, it promotes fibroblast migration and proliferation, erythrocyte 
aggregation, activation of the coagulation cascade, enhanced inflammatory cell 
infiltration into the wound area, spontaneous blood clotting, and obstruction 
of nerve terminals and collagen deposition. Biocompatible, biodegradable, 
antibacterial, antioxidant, and low immunogenicity.

inadequate solubility, a slower 
and more unpredictable rate of 
biodegradation

Sodium algi-
nate

It is non-immunogenic, cheap in cost, biocompatible, biodegradable, and has 
good film-forming properties. Moreover, it can increase cytokine levels in 
wounds and activate macrophages.

insufficient chain tangling and lack of 
cell recognition sites.

Gelatin High hemostatic action, biodegradable, non-antigenic, and activates macrophages Poor mechanical strength and 
elasticity, restricted water solubility, 
form instability, and heat instability

Silk fibroin Strong, robust, elastic, and lightweight mechanical qualities; regulated rate of 
biodegradation; excellent oxygen and water vapor permeability; inflammatory 
resistance; and capacity to encourage keratinocyte and fibroblast adhesion and 
proliferation

The dehydrating process, which is 
required to remove the sericin (a 
protein that resembles glue and keeps 
fibroin together), may have an impact 
on mechanical strength.

Collagen reduced antigenicity, excellent in vivo stability, strong biocompatibility, 
stimulation of cell adhesion and proliferation, and the production of granulation 
tissue with cell chemoattractant

rapid breakdown propensity during 
degradation

Table 2: Synthetic polymers that are frequently used to make wound dressings

Material Advantages Disadvantages

Polyvinyl alcohol Breathability, adaptability, and ability to maintain a damp 
atmosphere

Low strength, inadequate thermal stability, and non-
biodegradability

Polyethylene glycol Biocompatibility, sensitivity to various physical and chemical 
stimuli, water and organic solvent solubility, neutrality in 
acidity and alkalinity, and so on

Lack of immunogenicity, non-biodegradable, and 
potential for contact allergies

Polycaprolactone durability, quick crystallization rate, biocompatibility, and 
flexibility

hydrophobic, lacking cell-binding sites, slow rate of 
biodegradation, and poor mechanical strength

polylactic acid Strong mechanical properties, mechanical sustainability in 
vivo or in vitro, heat stability, repeatability, adaptability, and 
processing simplicity

without cell binding sites and hydrophobic.

polyethylene oxide Water soluble, non-cytotoxic, biocompatible, and simple to 
manufacture

Low strength, inadequate thermal stability, and non-
biodegradability

Polyvinylpyrrolidone Soft, inexpensive, easy to clean up after, and capable of storing 
a lot of water without losing its mechanical integrity

inadequate mechanical strength, low thermal stability, 
and non-biodegradability

Poly(lactic-co-
glycolic acid)

Excellent solubility in common solvents, biodegradation rate, 
and adjustable wettability

limited cell affinity, weak ductility, high synthesis 
cost, and comparatively limited drug-loading capacity

polyurethane Superior elasticity and moisture permeability, mechanical 
strength akin to that of real tissue, and high porosity

Poor hemocompatibility and hydrophobicity
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created cutting-edge wound dressing treatments with synthetic 
polymers like PU that are loaded with AgNps and kaolinite. 
AgNps and kaolinite nanosheets may be hosted on the three-
dimensional network of PU electrospinning nanofiber mats, 
demonstrating the flexibility and adaptability of synthetic 
polymers in meeting vital wound care requirements.48

CONCLUSION
Recognizing the constraints of conventional treatments, 
significant research endeavors have been devoted to exploring 
innovative materials aimed at enhancing hemostasis and 
wound healing over recent years. Multiple approaches have 
been examined, encompassing the development of advanced 
solutions such as hydrogels, foams, sponges, bandages, 
and membranes, as well as the utilization of cutting-edge 
electrospinning technology. Electrospinning presents a 
versatile method for fabricating ultrafine fibers ranging from 
50 to 500 nm in diameter, showing great promise in addressing 
challenges in wound care. Noteworthy characteristics like 
enhanced adhesion, proliferation, migration, and differentiation 
are facilitated by the integration of electrospinning technology, 
highlighting its potential in advancing wound healing 
strategies. Furthermore, the considerable specific surface area 
of electrospun nanofiber membranes heightens their efficacy 
in absorbing blood and wound exudate, thus contributing to 
creating an ideal environment for healing. In essence, the 
complexities inherent in wound healing underscore the need 
to transition towards utilizing state-of-the-art materials and 
techniques that offer customized solutions to enhance patient 
outcomes and foster efficient wound management.
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