e-ISSN: 0975-9506, p-ISSN:2961-6093

Available online on www.ijpga.com

International Journal of Pharmaceutical Quality Assurance 2025; 16(11); 155-161

Original Research Article

A Radiological Study on Acromiohumeral Centre Edge Angle (ACEA) and Sourcil Sign in Shoulder Pain Patients

M. Rajesh Kumar¹, K. Anand², M. Arul Sruthi³, R. Venkatesan⁴

¹Assistant Professor, Department of Anatomy, Government Medical College and Hospital Karur, Tamilnadu

²Assistant Professor, Department of Anatomy, Government Medical College, Namakkal, Tamilnadu ³Assistant Professor, Department of Anatomy, Government Medical College and Hospital Karur, Tamilnadu

⁴Assistant Professor, Department of Physiology, Government Medical College, Krishnagiri, Tamilnadu

Received: 01-09-2025 / Revised: 16-10-2025 / Accepted: 22-11-2025

Corresponding Author: Dr. R. Venkatesan

Conflict of interest: Nil

Abstract

Background: Shoulder pain is one of the common ailments of older people in India. Measuring ACEA and assessing the incidence of the sourcil sign on plain shoulder X-rays can be very useful, time-saving, and cost-effective in patients with shoulder pain.

Aim: The main objective of the study is to determine the incidence of sourcil sign in shoulder pain patients and to measure the ACEA angle in plain X-rays and compare its association with sourcil sign and increased ACEA angle.

Methodology: The study is an analytical investigation conducted among patients with shoulder pain attending SRM Medical College Hospital and Research centre, Irungalur, Trichy. A total of 77 subjects were included in the study. We collected X-rays of the shoulder joint for 6 months, from June to November 2018. Following this, the X-rays were converted to the RADIANT DICOM viewer, and the ACEA angle was measured. The incidence of the sourcil sign was determined, and the correlation with the ACEA angle was statistically analyzed.

Results: The ACEA values ranged from 15.4 to 40.0 degrees, indicating moderate variation in the study population, and 16 participants (20.8%) showed a positive sourcil sign, while 61 participants (79.2%) were negative for the sign. Participants with a positive sourcil sign had a lower mean ACEA (25.57 \pm 7.49°) compared to those with a negative sourcil sign (28.73 \pm 5.48°). However, this difference was not statistically significant (p = 0.097).

Conclusions: In our study, there is an increased prevalence of higher ACEA angle in the general population with shoulder pain. However, ACEA showed only limited predictive performance in detecting the sourcil sign. Diagnosing with this simple radiological tool (plain X-rays) and early treatment have a positive impact on quality of life.

Keywords: Shoulder pain, Acromiohumeral Centre Edge Angle (ACEA), and Sourcil Sign.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Shoulder pain is the third most common musculoskeletal condition. The reported annual incidence of shoulder pain in primary care is 14.7 per 1000 patients per year with a lifetime prevalence of up to 70%. [1,2]

The main cause of shoulder pain is periarthritis, subacromial impingement syndrome and acute rotator cuff injury. [3] Most common causes of shoulder pain in primary care are reported to be rotator cuff disorders, acromioclavicular joint disorder and glenohumeral joint disorders. [4] The diagnosis of these disorders is based primarily upon results of clinical tests. [5-8] Plain radiography is

one of the commonest investigations performed initially for the diagnosis of shoulder pain. Adequate diagnosis and management of rotator cuff injuries is crucial to achieve improved patient outcomes. While accurate diagnosis of rotator cuff injuries requires advanced imaging in the form of shoulder magnetic resonance imaging (MRI), plain radiographs remain the first-line investigation in patients suspected of such injuries. [9,10]

A number of radiographic signs have been suggested to be associated with postero-superior cuff tears (supraspinatus and infraspinatus), including an acromial spur, a reduced subacromial

space, sourcil sign, acromial ace tabularization, greater tuberosity irregularity, humeral head sclerosis, humeral head rounding, soft tissue calcification, an osacromiale and a reduced acromio-humeral head distance.[11–23]

Singleton et al. [24] described ACEA in 2017 as the angle created between a line drawn superiorly from the center of the humeral head parallel to the glenoid and a second line from the center of the humeral head to the lateral edge of the acromion on a true anteroposterior (AP) glenohumeral X-ray.

If X-ray signs of shoulder pain like presence of sourcil sign, increased acromioclavicular edge angle, acromial spur, reduced subacromial space can predict rotator cuff injury then treatment of shoulder pain will be made time and cost effective. Sourcil sign and ACEA angle are less explored and sourcil sign is simple radiological sign which can be assessed by family physician. So our aim was to determine the incidence of sourcil sign in shoulder pain patients and to measure the ACEA angle in plain X-rays and compare its association with sourcil sign and increased ACEA angle.

Materials and Methods

The study is an analytical investigation conducted among 77 patients with shoulder pain attending SRM Medical College Hospital and Research centre, Irungalur, Trichy. To conduct this study, we have collected x rays of shoulder joint for a sixmonth period from june to November 2018. The x-rays were converted to RADIANT DICOM viewer software and Acromiohumeral Centre Edge Angle (ACEA) was measured, presence of sourcil sign was noted.

The study protocol was presented to the institutional ethics committee for approval and was approved. Informed consent was obtained from all participants. The confidentiality of the data collected was strictly ensured by electronic storage.

Study Design: Analytical study

Study Centre: SRM Medical College Hospital and

Research centre, Irungalur, Trichy

Selection Criteria


Inclusion Criteria: X-rays of shoulder joint of all shoulder pain patients

Exclusion Criteria: X-rays of patients who have already undergone surgery, fracture and shoulder dislocation were excluded from the study.

Measurement of ACEA: To measure the ACEA (see Figure 1), we superimposed a circle over the humeral head in order to find its centre. This circle followed the contour of the articular surface of the humeral head (ignoring the tuberosities).

One limb of the angle was drawn superiorly from the centre of the humeral head parallel to the glenoid. The second limb was drawn from the centre of the humeral head to the outer (most lateral) edge of the acromion. The angle created between these two lines was measured as the ACEA.

Sourcil sign is defined as an increase in sclerosis on the undersurface of the acromion compared to the superior acromial cortex. The incidence of Sourcil sign was determined and the correlation with ACEA angle was found and statistically co related.

Statistical Analysis: All the data were entered in Microsoft Excel and analyzed using SPSS, version 16. Continuous variables were summarized using descriptive statistics-Mean and standard deviation

(SD). Categorical variables were expressed as frequency and percentage. For inferential statistics, independent samples t-test was applied to compare the means of continuous variables between groups.

e-ISSN: 0975-9506, p-ISSN:2961-6093

For categorical variables, associations were tested using the Chi-square test (or Fisher's exact test when expected cell counts were <5). A p value <0.05 was considered statistically significant. To evaluate the predictive accuracy of the ACEA angle for the presence of the sourcil sign, Receiver Operating Characteristic (ROC) curve analysis was performed.

Results

The present study aimed to determine the incidence of the sourcil sign in the general population and to evaluate its association with the acromiohumeral Centre edge angle (ACEA) as measured on plain radiographs.

The analysis also explored the relationship of ACEA with demographic variables such as age and gender and assessed its predictive value for the presence of the sourcil sign using ROC analysis. The findings are summarized below.

Demographic Characteristics: A total of 77 subjects were included in the study. The mean age of the participants was 54.97 ± 11.56 years, with ages ranging from 25 to 80 years. The median age was 54 years, suggesting a relatively symmetric age distribution in the study population.

Of the 77 subjects, 65 (84.4%) were male and 12 (15.6%) were female, indicating a male predominance in the study population. Table 1 shows the demographic profile of the study participants.

Table 1: Demographic profile of the study participants

Variable		Descriptives	Descriptives		
Age (years)	Mean <u>+</u> SD	54.97 + 11.56	54.97 + 11.56		
	Minimum 25				
	Maximum	80			
		Frequency	Percentage		
Gender	Male	65	84.4 %		
	Female	12	15.6 %		

ACEA Measurements: The Acromiohumeral Centre Edge (ACEA) was measured using plain X-rays. The mean ACEA was 28.08 ± 6.78 degrees, with a median of 28.4 degrees. The ACEA values ranged from 15.4 to 40.0 degrees, indicating moderate variation in the cohort. Figure 1 shows the distribution of ACEA among the study participants.

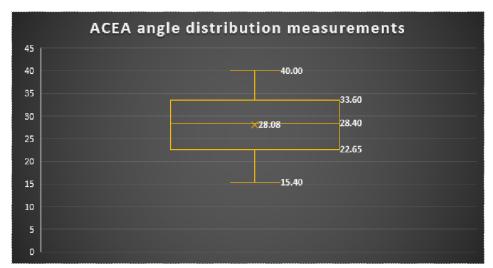


Figure 1: Distribution of ACEA measurements among the study participants

Incidence of sourcil Sign: Out of 77 radiographs evaluated, 16 participants (20.8%) showed a positive sourcil sign, while 61 participants (79.2%) were negative for the sign. Figure 2 shows the incidence of the sourcil sign among the study participants.

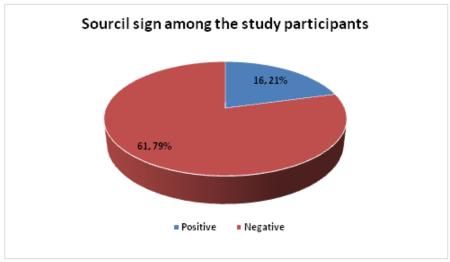


Figure 2: Sourcil sign among the study participants

Association between the sourcil sign and ACEA: Participants with a positive sourcil sign had a lower mean ACEA ($25.57 \pm 7.49^{\circ}$) compared to those with a negative sourcil sign ($28.73 \pm 5.48^{\circ}$). However, this difference was not statistically significant (p = 0.097, independent t-test). Figure 3 shows the association between the sourcil sign and ACEA among the study participants.

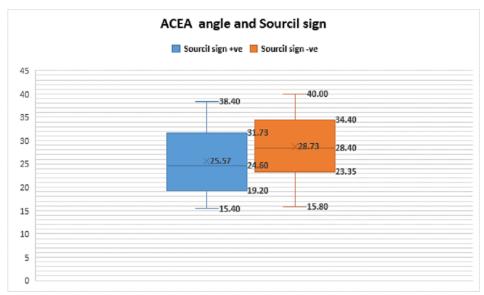
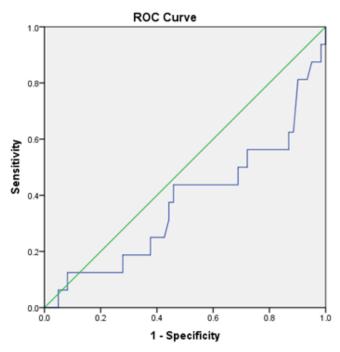



Figure 3: Association between the sourcil sign and ACEA

ROC Curve Analysis: A Receiver Operating Characteristic (ROC) analysis was performed to assess the predictive ability of the ACEA in identifying the presence of the sourcil sign. The area under the curve (AUC) was 0.374 (95% CI: 0.209–0.540), with a p-value of 0.124, suggesting poor discriminatory power. The coordinate points of the curve showed that at a cut-off of 14.4°, both sensitivity and specificity were 100%, but this may

reflect overfitting due to the limited sample size and ties.

Across increasing ACEA thresholds, sensitivity declined while specificity increased, without identifying a clearly optimal trade-off point. Figure 4 (ROC curve) further illustrates the limited predictive performance of ACEA in detecting the sourcil sign, with the curve lying close to the diagonal reference line.

Diagonal segments are produced by ties.

Figure 4: ROC analysis to predict sourcil sign with ACEA

Correlation between Age and ACEA: Pearson correlation analysis revealed a weak negative correlation between age and ACEA (r = -0.10), which was not statistically significant (p = 0.38). This suggests that age had no meaningful association with ACEA in the study population. Table 2 shows the correlation statistics between age and ACEA among the study participants.

Table 2: Correlation between Age and ACEA

Pearson	Correlation	p-value	Inference			
Correlation	coefficient					
Age vs ACEA	-0.10	0.38	Statistically not significant - weak negative correlation			

Association between Gender and ACEA: The mean ACEA among female participants was 27.29 ± 5.19 degrees, while it was 28.22 ± 7.05 degrees among males. The difference between genders was not statistically significant (p = 0.666; independent sample t-test), indicating that gender did not significantly influence ACEA measurements in this cohort. Table 3 shows the association between gender and ACEA among the study participants.

Table 3: Association between Gender and ACEA

- *************************************						
Gender	N	ACEA			p-value by Independent sample	
		Mean	Std. Deviation	Minimum	Maximum	t-test
Female	12	27.292	5.1906	19.6	35.6	0.666
Male	65	28.220	7.0543	15.4	40.0	
Total	77	28.075	6.7764	15.4	40.0	

Association between age and sourcil sign: The mean age of participants with a positive sourcil sign was 52.00 ± 9.46 years, while those without the sign had a mean age of 55.75 ± 11.99 years. Although the sourcil-positive group was relatively younger, the difference was not statistically significant (p = 0.250, independent sample t-test). Table 4 shows the association between age and sourcil sign among the study participants.

Table 4: Association between Age and sourcil sign

Table it is southern between inge and south in sign							
Sourcil	N	Age in years				p-value by Independent	
Sign		Mean	Std. Deviation	Minimum	Maximum	sample t-test	
Negative	61	55.754	11.9981	25.0	80.0	0.250	
Positive	16	52.000	9.4587	41.0	73.0		
Total	77	54.974	11.5610	25.0	80.0		

e-ISSN: 0975-9506, p-ISSN:2961-6093

Association between gender and positive sourcil sign: Among the sourcil positive subjects (16 out of 77), one female (6.3%) exhibited a positive sourcil sign, whereas 15 males (93.7%) showed a positive sourcil sign. Despite a higher prevalence in males, the association between gender and the presence of the sourcil sign was not statistically significant (p = 0.229, chi-square test). Table 5 shows the association between gender and positivesourcil sign among the study participants.

Table 5: Association between Gender and Positive Sourcil sign

Gender		Sourcil Sign		p-value
	Negative	Positive		
Female	11	1	12	0.229
	18.00%	6.30%	15.60%	
Male	50	15	65	
	82.00%	93.70%	84.40%	
Total	61	16	77	
	100.00%	100.00%	100.00%	

Discussion

Occasionally, the radiograph will demonstrate the so-called 'sourcil' sign or sclerosis on the under surface of the acromion, thought to be caused by pressure from the rotator cuff.[25-27] In our study the incidence of the sourcil sign was present in only 20.8 percent of the subjects with shoulder pain and we had male predominance. The mean age of participants with a positive sourcil sign was 52.00 \pm 9.46 years, while those without the sign had a mean age of 55.75 ± 11.99 years, but the difference was not statistically significant and there was a male predominance (84.4%). However, there is no statistically significant gender association with sourcil sign and study population as well. These finding are similar to the findings of the study done by Smith C et al.[14] where they found that Sensitivity, specificity, positive predictive value and negative predictive value were all poor for the radiological signs as predictors of rotator cuff pathology, regardless of age.

The mean ACEA angle found in our study of shoulder pain patients was 28.08+/- 6.08, which is higher than the normal, (15.54+/-4.4) suggesting that there is an increased prevalence of higher ACEA angle in general population with shoulder pain.

This finding is similar to a study by Aiquatani et al [28], where they found that ACEA was increased in rotator cuff tear and there was association between increased ACEA angle and rotator cuff tear.

In our study, participants with a positive sourcil sign had a lower mean ACEA ($25.57 \pm 7.49^{\circ}$) compared to those with a negative sourcil sign ($28.73 \pm 5.48^{\circ}$). However, this difference was not statistically significant. (p = 0.097). Also, Receiver Operating Characteristic (ROC) analysis performed to assess the predictive ability of the ACEA in identifying the presence of the sourcil sign suggested poor discriminatory power. Hence, ACEA and sourcil sign didn't have significant association. Though X- ray findings are common in

shoulder pain, based on our study, their diagnostic power and prognostic values are limited.

Conclusion

In our study there is increased prevalence of higher ACEA angle in general population with shoulder pain, although it was statistically insignificant. Sourcil sign is not consistently in relation with increased ACEA angle. The sourcil sign is not helpful in the diagnosis of rotator cuff pathology. A limitation in our study is that the ACEA measured on plain radiographs can be affected by patient position` and X- ray beam projection.

Conflict of interest: Nil

Source of Funding: Self-Funded

References

- 1. Van der Windt DAWM, Koes BW, De Jong BA, Bouter LM. Shoulder disorders in general practice: Incidence, patient characteristics, and management. Ann Rheum Dis. 1995; 54(12): 959-64.
- 2. Luime JJ, Koes BW, Hendriksen IJM, Burdorf A,Verhagen AP, Miedema HS, et al. Prevalence and incidence of shoulder pain in the general population: a systematic review. Scand J Rheumatol.2004;33(2):73-81
- 3. Hardy DC, Vogler 3rd JB, White RH. The shoulder impingement syndrome: prevalence of radiographic findings and correlation with response to therapy. American Journal of Roentgenology. 1986 Sep 1;147(3):557-61.
- 4. Mitchell C, Adebajo A, Hay E, Carr A. Shoulderpain: diagnosis and management in primary care. BrMed J. 2005; 331:1124-8.
- 5. Chakravarty KK, Webley M. Disorders of the shoulder: an often-unrecognized cause of disabilityin elderly people. Br Med J. 1990; 300:848-9.
- 6. Chard MD, Hazelman R, Hazelman BL, King RH, Reiss BB. Shoulder disorders in the elderly: a community survey. Arthritis Rheum. 1991;34(6):766-9.

- 7. Bot SDM, van der Waal JM, Terwee CB, Van der Windt DAWM, Schellevis FG, Bouter LM. Incidence and prevalence of complaints of the neck and upper extremity in general practice. Ann Rheum Dis. 2005;64(1):118-23.
- 8. Feleus A, Bierma-Zeinstra SM, Miedema HS, Bernsen RM, Berhaar JA, Koes BW. Incidence of non-traumatic complaints of arm, neck and shoulderin general practice. Man Ther. 2008; 13:426-33.
- 9. Hussain A, Muzzammil M, Butt F, Valsamis EM, Dwyer AJ. Effectiveness of plain shoulder radiograph in detecting degenerate rotator cuff tears. J Ayub Med Coll Abbottabad. 2018;30(1):8–11.
- 10. Nazarian LN, Jacobson JA, Benson CB, et al. Imaging algorithms for evaluating suspected rotator cuff disease: Society of Radiologists in Ultrasound consensus conference statement. Radiology. 2013;267(2):589–595.
- 11. Hamid N, Omid R, Yamaguchi K, et al. Relationship of radiographic acromial characteristics and rotator cuff disease: a prospective investigation of clinical, radiographic, and sonographic findings. J Shoulder Elbow Surg 2012; 21: 1289–1298.
- 12. Oh JH, Kim JY, Lee HK, et al. Classification and clinical significance of acromial spur in rotator cuff tear: heel type spur and rotator cuff tear. ClinOrthop 2010; 468: 1542–1550.
- 13. Loew M, Magosch P, Lichtenberg S, et al. How to discriminate between acute traumatic and chronic degenerative rotator cuff lesions: an analysis of specific criteria on radiography and magnetic resonance imaging. J Shoulder Elbow Surg 2015; 24: 1685–1693.
- 14. Smith C, Dattani R, Deans V, et al. The sourcil sign: a useful finding on plain X-ray? Shoulder Elbow 2010; 2: 9–12.
- 15. Hamada K, Fukuda H, Mikasa M, et al. Roentgenographic findings in massive rotator cuff tears. A long-term observation. ClinOrthop 1990; 254: 92–96.
- Huang LF, Rubin DA and Britton CA. Greater tuberosity changes as revealed by radiography: lack of clinical usefulness in patients with rotator cuff disease. AJR Am J Roentgenol 1999; 172: 1381–1388.
- 17. Pearsall AW, Bonsell S, Heitman RJ, et al. Radiographic findings associated with symptomatic rotator cuff tears. J Shoulder Elbow Surg 2003; 12: 122–127.
- 18. Suluova F, Kanatli U, Ozturk BY, et al. Humeral head cysts: association with rotator

- cuff tears and age. Eur J Orthop Surg Traumatol 2014; 24: 733–9.
- 19. Hershkovich O. Role of radiographs in shoulder pathology: a clinical review. Reports in Medical Imaging 2014; 7: 75–80.
- Saupe N, Pfirrmann CW, Schmid MR, et al. Association between rotator cuff abnormalities and reduced acromiohumeral distance. AJR Am J Roentgenol 2006; 187: 376–382.
- 21. Pandey S, Briban JB, Huang TL, et al. Does shoulder radiography predict rotator cuff abnormality? Examination of greater tuberosity cortical irregularity as an indicator for supraspinatus pathology. Scientific Assembly and Annual Meeting, Chicago, IL, USA, 26 November to 2 December 2011. Radiological Society of North America. Poster presentation in 2011 RSNA conference. RSNA location: Oak Brook, Illinois, USA.
- 22. Van der Reijden JJ, van den Bekerom M, Somford M, et al. Radiographic signs predicting rotator cuff tears. European Society of Musculoskeletal Radiology, York, UK, 18 to 20 June 2011. European Society of Musculoskeletal Radiology. Poster presentation in 2015 ESSR conference. ESSR location: Vienna, Austria.
- 23. Goutallier D, Le Guilloux P, Postel JM, et al. Acromio humeral distance less than six millimeter: its meaning in full-thickness rotator cuff tear. Orthop TraumatolSurg Res 2011; 97: 246–251.
- 24. Singleton N, Agius L, Andrews S. The acromiohumeral Centre edge angle: a new radiographic measurement and its association with rotator cuff pathology. J OrthopSurg (HongKong). 2017;25(3):727950.
- 25. Bunker TD, Schranz PJ. Clinical Challenges in Orthopaedics: The Shoulder. First edition. Oxford: Informa Health Care, 1998.
- Canale ST. Campbell's Operative Orthopaedics. Tenth edition. Philadelphia: Mosby, 2002.
- Rockwood CA, Matsen FA Jr. The Shoulder. Second edition. Philadelphia: WB Saunders, 2008
- 28. Alqahtani SM, Elyahia SA, Abu-Amara TB, AlOraini LI, Alsubaie SS, Hegazi TM, Alzahrani MM. The Acromiohumeral Center-Edge Angle and Risk of Rotator Cuff Tear: A Plain Radiograph and MRI Study. HSS J. 2024 Nov;20(4):498-501.