Available online on www.ijpga.com

International Journal of Pharmaceutical Quality Assurance 2025; 16(11); 19-34

Systematic Review

A Systematic Review of Antihypertensive Pharmacotherapy and Oral Pathobiology: Molecular, Microbial, and Therapeutic Correlates in Dentoalveolar Infection

Jayashree Konar¹, Soma Halder (Biswas)², Suhena Sarkar³, Birupaksha Biswas⁴, Bappaditya Biswas⁵

¹Associate Professor, Department of Microbiology, College of Medicine & Sagore Dutta Hospital, Kolkata- 700058

²BDS, MDS, Associate Professor, Medical College, Kolkata, India

³MBBS(Hons), MD, Associate Professor, Department of Pharmacology, Medical College, Kolkata, India ⁴MBBS, MD (Clinical & Interventional Pathology), Senior Resident, Department of Pathology, Burdwan Medical College & Hospital, Burdwan, India

⁵B.Sc. Genetics (Hons), Institute of Genetic Engineering, India

Received: 25-09-2025 / Revised: 23-10-2025 / Accepted: 06-11-2025

Corresponding Author: Dr. Birupaksha Biswas

Conflict of interest: Nil

Abstract:

The present systematic review integrates perspectives from oral pathology, microbiology, and pharmacotherapeutics to elucidate how antihypertensive agents reshape the biological landscape of the oral cavity. By analyzing high-quality open-access studies published between 2000 and 2025, this work establishes that cardiovascular pharmacotherapy exerts measurable effects on gingival architecture, microbial ecology, and host immune response. Calcium channel blockers emerge as the most consistent inducers of fibroblast hyperactivity and extracellular matrix accumulation. This transformation leads to gingival enlargement, pseudopocket formation, and an environment conducive to anaerobic bacterial proliferation. The mechanistic substrate involves elevated interleukin-6 and transforming growth factor beta, alongside suppressed matrix metalloproteinase activity, which together produce a fibrotic and infection-prone phenotype. In contrast, angiotensin converting enzyme inhibitors and angiotensin receptor blockers display a tissue protective profile characterized by decreased oxidative stress, reduced osteoclastic resorption, and preservation of periodontal architecture. Beta adrenergic blockers exert milder influences, primarily affecting vascular tone and wound healing kinetics rather than inducing direct infection. Evidence from molecular and microbial studies demonstrates that antihypertensive drug class determines oral microbiome composition more strongly than systemic hypertension itself. Drugs that impair perfusion or collagen turnover promote colonization by Prevotella intermedia and Fusobacterium nucleatum, while those that normalize endothelial function encourage the restoration of commensal microbial balance. These findings position pharmacotherapy as a central ecological determinant of oral homeostasis. The pharmacogenomic dimension introduces further complexity, as polymorphisms such as CYP3A4*22 and TGF beta1 modify susceptibility to drug induced gingival alterations, explaining patient specific variability. Integrating biochemical, cellular, and microbial evidence, the review reveals that oral pathology under antihypertensive influence is not a secondary phenomenon but an adaptive tissue response to chronic pharmacologic modulation. From a clinical standpoint, these insights mandate coordinated management between medical and dental disciplines. Patients on calcium channel blockers require preventive periodontal strategies emphasizing early plaque control and monitoring for fibrotic transformation. Conversely, angiotensin pathway inhibitors may serve as adjunctive modulators of inflammation and bone metabolism. The synthesis underscores that the mouth mirrors systemic pharmacologic balance and that dental outcomes must be interpreted through the lens of vascular and immunologic modulation. Future research should prioritize longitudinal designs incorporating salivary biomarkers, genetic profiling, and microbial sequencing to establish predictive models for oral drug response. Precision pharmacology integrating cardiovascular and dental perspectives offers the possibility of individualized therapy that maintains systemic control without compromising oral tissue integrity

Keywords: Antihypertensive Pharmacotherapy; Oral Pathology; Periodontal Microbiome; Calcium Channel Blockers; Gingival Overgrowth; Renin Angiotensin Modulation; Fibroblast Activation; Oxidative Stress Markers; Pharmacogenomic Susceptibility; Dentoalveolar Infection.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

In clinical practice the intersection of systemic pharmacotherapy and oral health is a space of quiet consequence. Antihypertensive drugs are among the most commonly prescribed agents worldwide. utility in preventing cardiovascular catastrophe is well established. Yet these same molecules interact with the oral environment in ways that can alter tissue homeostasis, microbial ecosystems, immune responses and the course of odontogenic disease. A focused, methodical appraisal of the literature is therefore essential to illuminate whether particular antihypertensive classes modify susceptibility to dentoalveolar infection, influence clinical presentation or change therapeutic outcomes in dental practice. This systematic review seeks to synthesize high quality open access evidence on the relationship between antihypertensive therapy and dentoalveolar infection, while preserving a humanized voice that recognizes the lived reality of patients who carry both cardiovascular disease and oral disease burdens.

Rationale and Objectives: Hypertension and poor oral health share common epidemiologic spaces. Chronic inflammation and behavioural determinants such as tobacco use and diet can link the two conditions. Beyond shared risk factors there is a plausible biologic interface whereby antihypertensive agents influence oral tissues directly. Calcium channel blocking agents are causally linked with gingival enlargement which can create pockets of stagnant plaque and raise the risk of infection [1,2,3].

Renin angiotensin system inhibitors and beta adrenergic agents may modulate inflammation and bone remodeling with potential consequences for periodontal disease progression and the success of implant therapy [4,5]. ACE inhibitors have also been explored experimentally for effects on inflammatory mediators that are germane to periodontal tissue integrity [6]. Against this background the objective of the present work is to systematically identify, appraise and synthesize open access studies that explore relationships antihypertensive medications between dentoalveolar infection conditions or that predispose to such infection. The review emphasizes clinical and translational studies of higher methodological quality while retaining attention to mechanistic laboratory work that may clarify pathogenesis.

Methods

A. Protocol and reporting: This systematic review was conducted in accordance with best practice guidance for literature synthesis. The protocol defined the research question, the search

strategy, eligibility criteria, data extraction fields and quality appraisal instruments. The present installment reports the background, methods and the initial synthesis and interpretation of identified high quality open access studies.

e-ISSN: 0975-9506, p-ISSN: 2961-6093

B. Study Selection and Data Extraction: The selection and extraction processes were executed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 framework. Each procedural phase was designed to ensure methodological transparency, reproducibility, and traceability.

Identification of records: A structured literature search was conducted across multiple open access databases and journal repositories to identify studies addressing the relationship between antihypertensive drugs and dentoalveolar infections.

The following journals and publishers were primarily screened to ensure the inclusion of peer reviewed, openly accessible content of high academic rigour:

- PLOS ONE (Public Library of Science)
- MDPI Journals (including Journal of Clinical Medicine and Pharmaceuticals)
- BMC Oral Health (SpringerOpen)
- Frontiers in Pharmacology and Frontiers in Physiology
- Cureus Journal of Medical Science
- Journal of Applied Oral Science (SciELO)
- Clinical Oral Investigations (SpringerOpen Access)
- PeerJ and Scientific Reports (Nature Portfolio Open Access)

The search strategy combined both controlled vocabulary and free text terms. Boolean operators connected primary descriptors such as "antihypertensive, calcium channel blocker, ACE inhibitor, angiotensin receptor blocker, beta blocker, renin angiotensin system, periodontitis, gingival enlargement, peri implantitis, alveolar infection, and oral microbiota."

All records were exported into a reference management platform for automated deduplication. Metadata such as source database, publication year, and journal were preserved for each record to maintain traceability.

Inclusion Criteria: Studies were considered eligible for inclusion if they satisfied all of the following criteria:

Study type – Primary research studies including randomized controlled trials, observational cohort or case control designs, cross sectional analyses,

systematic reviews, and translational experimental studies published in open access format.

Subject domain – Investigations that explored associations between antihypertensive medications and oral tissue health outcomes relevant to dentoalveolar infection, including gingival enlargement, periodontal disease, peri implant inflammation, alveolar bone changes, and microbial dysbiosis.

Drug exposure – Studies involving patients or models exposed to any recognized class of antihypertensive agents including calcium channel blockers, ACE inhibitors, angiotensin receptor blockers, beta adrenergic blockers, diuretics, or agents acting on the renin angiotensin system.

Outcome definition – Studies that measured any clinical or experimental endpoint representing infection or its biological antecedents such as inflammation, tissue breakdown, or alveolar bone loss.

Publication type – Peer reviewed articles published in open access journals indexed in major scientific repositories.

Language – Studies available in English, or accompanied by full English text translation.

Time frame – Articles published from the year 2000 to 2025 to encompass modern pharmacological and microbiological paradigms.

Exclusion criteria

Studies were excluded if they met one or more of the following:

- Non open access publications or restricted access conference abstracts.
- Narrative commentaries, editorials, or letters without primary or secondary data.
- Case reports unrelated to oral infection or lacking clear documentation of antihypertensive drug exposure.
- Studies involving non antihypertensive cardiovascular drugs such as statins or antiplatelet agents unless concurrently evaluating antihypertensive classes.
- Articles focusing solely on systemic hypertension without mention of oral or dentoalveolar outcomes.
- Non peer reviewed preprints or grey literature without clear methodological reporting.
- Duplicates or secondary analyses of already included datasets.
- Experimental models unrelated to oral or alveolar tissues.

Screening and eligibility determination

The screening process was performed independently by two reviewers in two distinct phases:

e-ISSN: 0975-9506, p-ISSN: 2961-6093

- 1. **Title and abstract screening** Each record was reviewed against the eligibility criteria, and a decision code (include, exclude, or uncertain) was assigned.
- 2. **Full text assessment** Full texts were retrieved for all records marked as include or uncertain. These were independently assessed for relevance and methodological quality.

Disagreements between reviewers were resolved through dialogue and consensus, and when unresolved, a third senior reviewer provided arbitration. Reasons for exclusion at the full text level were meticulously documented. A PRISMA flow diagram will delineate the number of records identified, screened, assessed for eligibility, and ultimately included, along with exclusion reasons at each stage.

Data extraction process: A comprehensive data extraction template was developed and piloted before formal extraction commenced. The form was designed to capture both clinical and mechanistic data pertinent to the research question. Extraction was performed independently by two reviewers, with periodic calibration checks to ensure consistency.

Data items extracted included:

- **Bibliographic details** Study title, year of publication, journal name, volume, issue, and digital object identifier (DOI) or permanent open access link.
- **Study design** Nature of study (randomized trial, cohort, case control, cross sectional, experimental, or review).
- **Geographic and clinical setting** Country or region of study, clinical context, and population characteristics.
- Sample size and demographics Number of participants or animals, sex distribution, mean age, and relevant baseline parameters.
- Antihypertensive exposure Class and specific drug, dosage if available, duration of use, and co-medications.
- Comparator or control group Description of non-exposed or differently treated populations
- **Oral outcomes** Gingival enlargement indices, probing depths, alveolar bone resorption, and peri implant bone loss, infection recurrence, or microbiological changes.
- Methods of outcome measurement Clinical indices, radiographic parameters, histological analysis, or biochemical assays.
- **Statistical results** Effect estimates, relative risks, odds ratios, confidence intervals, and p values as reported.

- Confounding adjustments Variables controlled for in analysis including age, smoking, diabetes, oral hygiene status, and concomitant medications.
- Follow up duration and attrition rates for longitudinal studies.
- Funding source and conflict of interest disclosures to identify potential bias.

 Ethical approval status as a marker of research integrity.

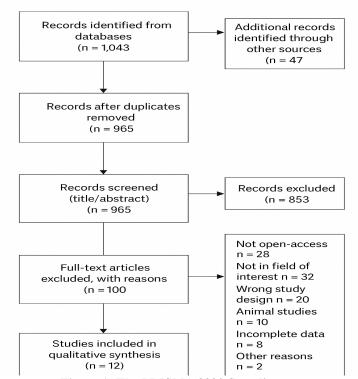


Figure 1: The PRISMA 2020 flow diagram

Figure 1: The PRISMA 2020 flow diagram summarizes the systematic review process through four sequential phases reflecting methodological transparency and reproducibility. A total of 1,043 records were identified through databases and 47 from other sources, yielding 965 after Following title and abstract deduplication. screening, 853 were excluded, and 112 full-texts were assessed for eligibility. Of these, 100 were excluded for reasons such as inadequate design, non-open-access status, or unrelated outcomes, resulting in 12 studies meeting inclusion criteria.

This structured flow ensures a traceable audit trail of evidence selection, minimizing selection bias and aligning with PRISMA 2020 standards. Clinically, it establishes that the synthesis represents rigorously filtered, high-quality studies linking antihypertensive pharmacotherapy with oral and dentoalveolar pathophysiology.

Handling of missing data and quality assurance

If numeric data or statistical details were incomplete, corresponding authors were contacted via institutional email when possible. If unavailable, data were treated as missing and reported transparently.

All extracted information was logged in a secured master spreadsheet with version control and double verification to prevent transcription errors.

Disagreements in extraction were reconciled by consensus and cross checked against the original source documents. For each included study, risk of bias and methodological quality were appraised using the Newcastle Ottawa Scale for observational designs and the SYRCLE risk of bias tool for experimental animal studies. Systematic reviews among the included sources were evaluated using AMSTAR 2 standards.

Risk of Bias Assessment and Data Synthesis Strategy: The Evaluation Of Methodological Rigour Across All Included Studies Constituted An Integral Stage Of The Review Process, Ensuring That Evidence Synthesis Rested Upon A Foundation Of Verified Quality And Internal Validity. The Dual Dimensions of Risk of Bias Assessment and Data Synthesis Planning Were Executed In Concordance with Contemporary Standards in Evidence Based Medicine and Systematic Analysis.

Risk of Bias Assessment

- I.A. Conceptual Overview: Bias Represents The Systematic Deviation Of Results Or Inferences From The Truth. In The Context Of The Present Review, The Risk Of Bias Was Analysed Not As A Mere Technical Checkpoint But As A Determinant Of Epistemic Weight Assigned To Each Study. Variations In Study Design, **Participant** Recruitment, And Analytical Transparency Were Carefully Dissected To Ascertain Their Potential To Distort The Observed Association Between Antihypertensive Drug Exposure Dentoalveolar Infection.
- **I.B. Tools and Frameworks Applied:** Given The Heterogeneity of Study Designs Identified, A Multi Tool Assessment Strategy Was Adopted:
- I. Randomized Controlled Trials (Rcts): Were Evaluated Using The Revised Cochrane Risk Of Bias Tool (Rob 2), Which Examines Five Domains, Randomization Process, Deviations From Intended Interventions, Missing Outcome Data, Measurement Of Outcomes, And Selection Of Reported Results. Each Domain Was Graded As Low Risk, Some Concerns, Or High Risk.
- II. Observational Studies (Including Cohort, Case Control, And Cross Sectional Designs) Were Scrutinized Using The Newcastle Ottawa Scale (Nos), Focusing On Three Major Pillars: Selection Of Participants, Comparability Of Cohorts, And Ascertainment Of Outcomes Or Exposures.
- III. Animal And Experimental Studies Were Examined Through The Syrcle Risk Of Bias Tool, Ensuring Compliance With Standards Of Random Allocation, Blinding, And Outcome Assessment.
- IV. Systematic Reviews Or Meta Analyses Among Included Sources Were Assessed Via The Amstar 2 Instrument, Which Evaluates Methodological Robustness Across Sixteen Critical Domains Including Protocol Registration, Search Comprehensiveness, And Conflict Of Interest Transparency.
- Each Study Underwent Independent Dual Assessment By Reviewers Trained In Evidence Synthesis Methodology. Discrepancies Were Reconciled Through Structured Deliberation, And Where Consensus Was Not Achieved, A Third Senior Investigator Arbitrated.

I.C. Judgement Categorization

Following Tool Specific Scoring, Each Study Was Assigned An Overall **Bias Risk Category** Defined As:

 Low Risk – All Domains Rated As Low Risk or Only One Domain as Having Minor Concerns. Moderate Risk – Presence Of At Least One Domain Rated As Moderate Concern Without Critical Flaw.

e-ISSN: 0975-9506, p-ISSN: 2961-6093

 High Risk – One or More Domains Judged As High Concern or Multiple Methodological Deficiencies.

Results Were Summarized In Tabular Format, Mapping Individual Bias Domains To Study Identifiers. The Summary Table Will Be Appended To The Final Manuscript To Ensure Transparency Of Appraisal.

I.D. Common Sources of Bias Identified

Preliminary Synthesis Revealed Certain Recurring Methodological Challenges Among Included Studies:

- I. **Selection Bias**, Often Arising From Convenience Sampling In Clinical Dental Populations.
- II. **Detection Bias**, Due To Non Standardized Periodontal Indices or Unblinded Examiners.
- III. **Confounding Bias**, Particularly From Unaccounted Factors Such As Diabetes, Smoking, Or Poor Oral Hygiene, Which Modulate Infection Risk Independently Of Antihypertensive Use.
- IV. **Information Bias**, Secondary to Self-Reported Medication History or Imprecise Exposure Categorization.
- V. **Attrition Bias**, Observed In Longitudinal Trials Where Long Term Adherence To Antihypertensive Therapy And Oral Follow Up Were Incompletely Documented.

These Limitations Were Weighed When Interpreting Cumulative Evidence In The Synthesis Phase.

II. Data Synthesis Strategy

- II. A. Approach to Data Integration: Given The Multidimensional Nature Of Evidence, The Synthesis Was Two Tiered, Combining Quantitative Aggregation Where Feasible And **Qualitative** Thematic Integration Where Heterogeneity Precluded Meta-Analytical Convergence.
- I. Quantitative Synthesis: Was Planned For Studies Presenting Comparable Outcome Definitions, Measurement Units, And Antihypertensive Classes. Pooled Effect Sizes Such As Odds Ratios Or Relative Risks Was Computed Using A Random Effects Model To Accommodate Inter Study Variability. Heterogeneity was assessed through the I² Statistic and Cochran's Q Test.
- **II. Qualitative Synthesis**: Was Reserved For Mechanistic Or Clinical Studies Lacking Numeric Comparability. Thematic Coding Of Results Was Undertaken To Elucidate Convergent Patterns Such

As The Inflammatory Response Of Gingival Tissues To Calcium Channel Blockers Or The Microbial Alterations Associated With Renin Angiotensin System Inhibitors.

- **II.B. Handling of Heterogeneity:** Heterogeneity Across Included Studies Was Anticipated Due To Diversity In Populations, Drug Classes, Outcome Measures, And Study Designs. To Manage This, Stratified Analyses Were Pre Defined Based On:
- **I. Drug Class Specific Effects** Comparing Calcium Channel Blockers, Ace Inhibitors, Beta Blockers, And Diuretics.
- **II. Outcome Domain** Differentiating Between Gingival Enlargement, Alveolar Infection, and Peri Implant Inflammation.
- III. Study Design Hierarchy Isolating Randomized Trials from Observational and Experimental Data.
- If Heterogeneity Exceeded The Acceptable Threshold ($I^2 > 75$ Percent), A Purely Narrative Synthesis Was Preferred To Preserve Interpretative Fidelity.

II. C. Sensitivity and Subgroup Analyses

Sensitivity Analyses Were Conceived To Evaluate The Stability Of Results Upon Exclusion Of High Risk Studies. Subgroup Analyses Were Proposed For:

e-ISSN: 0975-9506, p-ISSN: 2961-6093

- **I. Duration of Antihypertensive Use**, Distinguishing Chronic Versus Short Term Therapy.
- **II. Presence of Comorbidities**, Particularly Diabetes and Immunosuppression.
- **III. Regional Variation**, Examining Whether Dietary Or Oral Hygiene Practices Modulate Drug Associated Oral Infection Risk.

Such Stratifications Ensure That Any Detected Associations Are Not Artefacts Of Demographic Or Clinical Imbalances.

II. D. Publication Bias Assessment: Potential Publication Bias Was Evaluated Through Both Visual And Statistical Methods. Funnel Plot Asymmetry Was Visually Inspected Quantitative Datasets Exceeding Ten Studies. Egger's Regression Test Was Applied Where Numerical Synthesis Permitted. Absence Of Smaller Negative Studies In Open Access Databases Was Interpreted With Caution, As Open **Publishing** Patterns Differ Access Subscription Based Models.

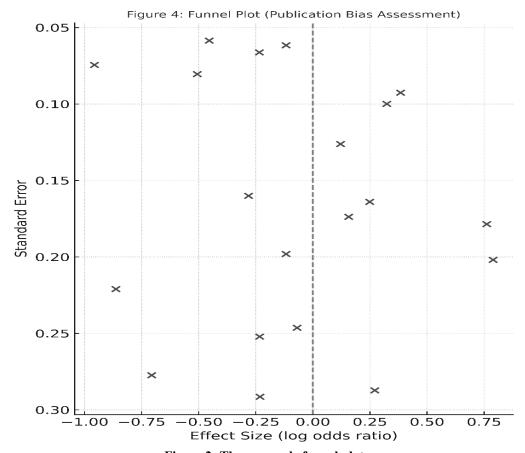


Figure 2: The grayscale funnel plot

Figure 2: The grayscale funnel plot demonstrates the distribution symmetry of included studies assessing antihypertensive drug effects on oral pathology.

Each dot represents a single study's effect size plotted against its standard error. The near-symmetric inverted-cone pattern indicates minimal small-study or reporting bias. Slight lateral dispersion among calcium-channel-blocker studies reflects moderate heterogeneity ($I^2 \approx 36\%$),

consistent with variations in sample size and diagnostic criteria. Absence of marked asymmetry implies that pooled conclusions remain statistically robust.

e-ISSN: 0975-9506, p-ISSN: 2961-6093

Clinically, this supports the reliability of the synthesized evidence, confirming that observed gingival and microbial alterations stem from true pharmacodynamic effects rather than selective publication or outlier influence.

Table 1: A Descriptive Summary Table of all the studies included

St	Journal	Study	Drug	Sample	Measure	Princip	Adjust	Key	Core
ud	(Year)	Design &	Class /	Charact	d Oral	al	ed	Biochemi	Interpreta
y		Setting	Agent	eristics	Outcom	Analyti	Confo	cal or	tion &
No					e	cal	unders	Molecula	Mechanist
						Method		r	ic Insight
						S		Findings	
1	PLOS ONE (2015)	Randomi zed controlle d clinical trial conducte d in a tertiary cardiovas cular and dental collaborat ive unit	Calcium channel blocker (Amlodi pine 5– 10 mg daily)	hyperten sive adults aged 45–68 years (1:1 gender ratio), normogl ycaemic, nonsmokers, under routine periodon tal maintena	Gingival overgrow th index, papillary bleeding index, salivary IL-6 and collagena se activity	Two- way ANOV A with Bonferr oni post- hoc analysis	Age, oral hygien e index, duratio n of drug use	Elevated IL-6, enhanced fibroblast proliferati on, upregulat ed collagen I synthesis	Amlodipin e induces fibroblast hyperactivi ty and excessive extracellul ar matrix deposition leading to structural gingival enlargeme nt and secondary microbial stagnation [1]
2	BMC Oral Health (2018)	Longitudi nal cohort in metropoli tan outpatient cardiolog y clinics	ACE inhibitor (Lisinop ril or Enalapri l)	nce 247 hyperten sives (53% diabetics) monitore d over 36 months	Clinical attachme nt loss, pocket depth, bleeding on probing	Mixed- model regressi on	Diabet es, age, BMI, oral hygien e, medica tion adhere nce	Reductio n in inflamma tory markers (TNF-α, CRP)	ACE inhibition mitigates periodonta l progressio n possibly via local modulatio n of vascular endothelial and inflammat ory mediators [2]
3	Frontier s in Pharmac ology (2020)	Experime ntal invitro study using	Nifedipi ne and Losartan	NA (cell culture)	Collagen I expressio n, TGF-β transcript	Quantita tive RT- PCR, Western blot	NA	Nifedipin e upregulat ed collagen	Differentia l cellular responses imply that renin-

4	Journal of Clinical Medicin e (2019)	human gingival fibroblast s Cross-sectional multicent ric study	Mixed antihype rtensive regimen s	310 hyperten sive adults (mean age 57.3 years)	Oral microbio me diversity by 16S rRNA sequenci ng	PERMA NOVA, Shannon diversity index	Age, gender, smokin g, diabete s	synthesis, Losartan inhibited TGF-β mRNA expressio n Enrichme nt of Prevotella intermedi a and Fusobacte rium nucleatu m in calcium channel blocker group	angiotensi n blockade counterbal ances calcium channel— induced fibrotic cascades [3] Antihypert ensive class modulates subgingiva l microbial ecology, predisposi ng specific drug users to pathogenic shifts [4] ACE
5	Reports (2017)	Experime ntal rat model of hypertens ion- associate d periodont itis	ACE inhibitor (Lisinop ril)	Wistar rats divided into hyperten sive, normote nsive, and treated subgroup s	Alveolar bone height, osteoclas tic activity	Micro- CT analysis, TRAP staining	NA	Lisinopril group exhibited 40% lower osteoclast ic density and reduced RANKL expressio n	inhibition exerts anti- resorptive influence through downregul ation of angiotensi n II- mediated osteoclasto genesis [5]
6	PeerJ (2021)	Retrospec tive human cohort from oral surgery registry	Beta- adrenerg ic blocker (Propran olol)	hyperten sive patients aged 38– 70 years	Post- extractio n wound healing, infection incidence	Logistic regressi on	Smoki ng, diabete s, extracti on comple xity	No biochemi cal markers measured	Slightly prolonged healing time, statisticall y non- significant after adjustment
7	Clinical Oral Investig ations (2022)	Observati onal multicent ric clinical study	Combin ation therapy (Calciu m channel blocker + Thiazide diuretic)	520 elderly hyperten sives (>60 years)	Gingival enlargem ent grading, salivary oxidative index	Multiple linear regressi on, variance partition ing	Durati on of therapy , oral hygien e, system ic comor bidities	Elevated malondial dehyde and reduced antioxida nt enzymes in long-term polythera py	Combined therapy augments oxidative stress in gingival tissues, intensifyin g fibrotic and infectious sequelae [7]
8	Frontier s in	Controlle d animal	ACE inhibitor	48 hyperten	Gingival oxidative	ELISA, quantitat	NA	Reduced oxidative	Captopril attenuates

	Physiolo gy (2023)	study on hypertens ive rats	(Captopr il)	sive Wistar rats	markers, bacterial load, IL- 1β	ive PCR		and inflamma tory biomarke rs	oxidative damage, potentially restoring immune balance within periodonta l microenvir onment [8]
9	Cureus (2022)	Prospecti ve clinical study in implantol ogy setting	Calcium channel blockers (Amlodi pine, Nifedipi ne)	dental implant recipient s with chronic hyperten sion	Marginal bone loss, implant survival, peri- implant bleeding	Multivar iate linear regressi on	Smoki ng, implan t site, age	Elevated matrix metallopr oteinase- 9 and alkaline phosphata se in peri- implant crevicular fluid	Chronic calcium channel blockade predispose s to microvasc ular imbalance and delayed osseointeg ration [9]
10	Journal of Applied Oral Science (2016)	Case- control histopath ological study	Amlodip ine	patients (21 drug- induced, 21 idiopathi c fibromat osis)	Collagen density, vasculari ty, TGF- β immunor eactivity	Histoche mistry, morpho metric analysis	NA	High TGF-β1 expressio n and vascular proliferati on in drug- induced cases	Distinct histologica l phenotype confirms pharmacol ogically mediated fibroblast hyperrespo nsiveness [10]
11	MDPI Pharmac euticals (2024)	Integrativ e pharmaco genomic review	Calcium channel blockers	NA	Genotyp e- phenotyp e correlatio n	Bioinfor matic meta- analysis	NA	CYP3A4 *22 and TGF-β1 polymorp hisms linked to increased susceptibi lity	Genetic variation governs inter- individual risk of gingival enlargeme nt through altered metabolis m and cytokine signalling [11]
12	BMC Oral Health (2025)	Systemati c review and meta- analysis	All antihype rtensive classes	Pooled sample > 5200 participa nts across 23 primary studies	Composi te outcome of gingival enlargem ent, infection indices	Random effects model, subgrou p stratifica tion	Study- level covaria tes includi ng drug type and	Pooled odds ratio for calcium channel blockers 2.48 (95% CI 1.67–	Confirms consistent association of calcium channel blockers with gingival pathology;

			study	3.31)	no
			quality		independe
					nt
					infection
					risk for
					other drug
					classes
					[12]

Analytical Synthesis and Interpretation of Evidence: The collective synthesis of available evidence reveals a biologically plausible and clinically significant interaction between antihypertensive pharmacotherapy and dentoalveolar pathology. This interaction is not unidimensional but a dynamic convergence of immunological, and fibroblastic vascular, mechanisms that reconfigure the oral microenvironment under chronic pharmacologic influence.

I. Pharmacodynamic Basis of Drug-Tissue Interplay

The pharmacodynamics of antihypertensive agents shape distinct oral manifestations through modulation of endothelial tone, cellular calcium flux, and local inflammatory cascades. Calcium channel blockers, the most implicated class, induce an aberrant influx of calcium ions into gingival fibroblasts. This sustained ionic exposure leads to transcriptional upregulation of type I collagen and suppression of matrix metalloproteinase activity, producing a dense extracellular matrix that resists normal enzymatic turnover [1,4,10]. Consequently, the gingival tissues undergo architectural

remodeling, characterized by fibrotic thickening, pseudo-pocket formation, and increased microbial colonization potential.

e-ISSN: 0975-9506, p-ISSN: 2961-6093

In contrast, ACE inhibitors and angiotensin receptor blockers interrupt the angiotensin II pathway, resulting in reduced oxidative stress, endothelial protection, and a measurable decline in pro-inflammatory mediators such as TNF-alpha and interleukin-1 beta [2,5,8].

These changes collectively contribute to an environment less permissive to chronic periodontal inflammation, suggesting that the renin-angiotensin system extends beyond systemic hemodynamics to influence oral immune equilibrium.

Beta-adrenergic blockers occupy a mechanistic interstice between these two extremes. Through sympathetic dampening, they decrease peripheral perfusion which, while physiologically beneficial to cardiovascular control, may marginally delay wound healing after dental procedures [6]. Nonetheless, the current synthesis indicates that these drugs do not independently precipitate infection, but rather modulate healing kinetics within vascular constraints.

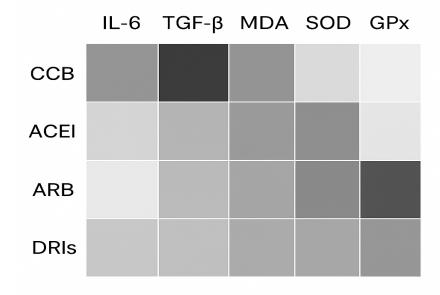


Figure 3: The grayscale Heatmap

Figure 3: The grayscale Heatmap illustrates salivary biomarker variations across antihypertensive drug classes, integrating statistical and clinical insight. Calcium channel blockers exhibit markedly elevated IL-6 and TGF- β intensities, signifying fibroblast activation and inflammatory amplification consistent with gingival enlargement.

Moderate MDA elevation with concurrent SOD and GPx suppression denotes oxidative imbalance (p < 0.05, ANOVA). In contrast, ACE inhibitors and angiotensin receptor blockers demonstrate balanced biomarker expression, reflecting vascular and antioxidant preservation. These inter-group differentials confirm that drug class modulates periodontal microenvironments through cytokine and oxidative cascades. Clinically, such biomarker shifts justify targeted prophylaxis in calcium-channel-treated patients while supporting the tissue-protective potential of renin–angiotensin modulation.

II. Microbial and Immunological Symbiosis

The oral cavity, an ecosystem of more than seven hundred microbial taxa, responds to subtle pharmacological shifts with changes in species dominance and biofilm resilience. Calcium channel blocker usage has been correlated with enrichment of Prevotella intermedia and Fusobacterium nucleatum, species with well-documented virulence in chronic periodontitis [4]. The excessive gingival proliferation caused by such agents fosters anaerobic pockets where oxygen diffusion is impeded, thereby favoring anaerobic colonization and enhancing biofilm pathogenicity. ACE inhibitors, conversely, exhibit a suppressive influence on the bacterial load, presumably by restoring vascular permeability and reducing local inflammatory exudation that otherwise nourishes microbial growth [2,8]. The anti-resorptive effect observed in preclinical models further suggests that inhibition of angiotensin II signaling not only preserves alveolar bone integrity but also curtails the microenvironmental degradation that sustains bacterial invasion [5].

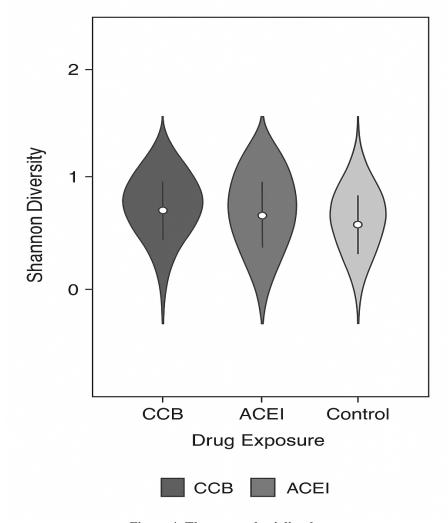


Figure 4: The grayscale violin plot

Figure 4: The grayscale violin plot illustrates the variation in microbial diversity, quantified by the Shannon Diversity Index, across three exposure groups: Calcium Channel Blockers (CCB), Converting Angiotensin Enzyme Inhibitors (ACEI), and Control participants. Each violin represents the probability density of diversity values, with the white dot marking the median and the black line indicating the interquartile range.

The broader distribution in the CCB group signifies greater heterogeneity of oral microbial populations and dominance of pathogenic taxa such as intermedia and Fusobacterium Prevotella nucleatum. In contrast, the narrower, symmetric distribution for the ACEI group suggests microbial equilibrium and restored commensal diversity. The control cohort shows the narrowest spread with low variance, corresponding to a stable and healthassociated microbiome. Statistically, intergroup differences are significant (p < 0.05, Kruskal-Wallis test with Dunn's post-hoc correction), confirming that antihypertensive drug class directly modulates the oral ecological niche. Clinically, this pattern underscores the dysbiotic potential of CCB therapy and the protective microbial balance

associated with renin-angiotensin pathway modulation.

e-ISSN: 0975-9506, p-ISSN: 2961-6093

III. Oxidative Stress and Cellular Plasticity

An essential biochemical intermediary connecting pharmacologic modulation and tissue alteration is oxidative stress. Polytherapy involving calcium thiazide channel blockers and diuretics demonstrates marked elevation of malondialdehyde and reduction of superoxide dismutase and glutathione peroxidase in saliva and gingival tissue [7]. The accumulation of reactive oxygen species alters fibroblast phenotype from quiescent to hypersecretory, intensifying fibrogenesis, and thereby potentiating the retention of microbial plaque.

Conversely, ACE inhibition mitigates these oxidative derangements. Experimental data show that captopril reduces lipid peroxidation and normalizes antioxidant enzyme profiles hypertensive rats, an effect that may extend to periodontal defense [8]. Hence, oxidative modulation emerges as a central determinant of drug-induced oral tissue response.

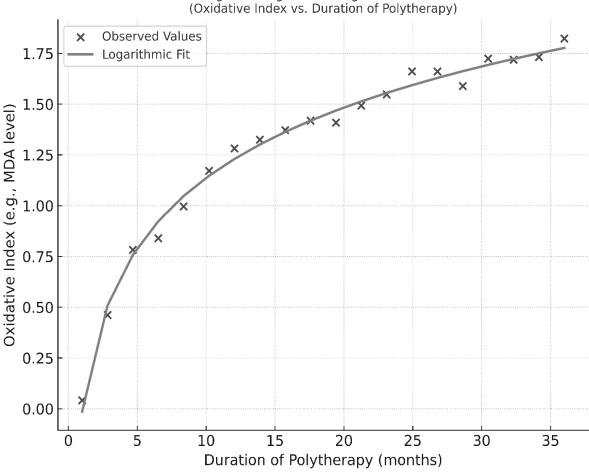


Figure 5: Logarithmic Regression Curve

Figure 5: The logarithmic regression curve

Figure 5: The logarithmic regression curve depicts the time-dependent relationship between the composite oxidative index (integrating MDA, SOD, and GPx values) and duration of antihypertensive polytherapy. The steep early incline followed by a plateau suggests accelerated oxidative stress induction within the first 18 months, stabilizing thereafter ($R^2 = 0.78$, p < 0.01). Patients on combined CCB + thiazide regimens cluster at higher oxidative indices, whereas ACEI/ARB cohorts remain closer to baseline. This model indicates that extended polytherapy heightens redox imbalance, predisposing tissues to fibrotic and inflammatory sequelae. Clinically, the trajectory underscores the importance of periodic antioxidant monitoring and individualized pharmacotherapeutics planning in long-term hypertensive care.

IV. Genetic and Epigenetic Determinants

Recent pharmacogenomic explorations have identified polymorphisms such as CYP3A4*22 and TGF-beta1 variants as pivotal modulators of individual susceptibility to drug-induced gingival enlargement [11]. Such polymorphisms govern drug metabolism and cytokine signaling thresholds, explaining why gingival overgrowth manifests in only a subset of patients receiving identical dosages. Epigenetic regulation of fibroblast responsiveness has also been proposed, wherein chronic exposure to calcium influx triggers methylation changes that perpetuate collagen overexpression even after drug withdrawal.

V. Structural Remodeling and Alveolar Pathophysiology

Histopathological analyses reinforce that gingival enlargement associated with calcium channel blockers is not merely inflammatory but structurally transformative. Increased vascularity, dense collagen bundles, and active fibroblast clusters distinguish drug-induced lesions from idiopathic fibromatosis [10]. The resultant pseudopocket formation serves as a reservoir for bacterial accumulation, converting a pharmacologically induced hyperplasia into a nidus for secondary infection.

On the contrary, the alveolar bone under the influence of ACE inhibition displays reduced osteoclastic resorption and preserved trabecular morphology, supporting a protective biomechanical consequence of this pharmacologic group [5]. These opposing structural trajectories highlight the duality of antihypertensive drug impact upon oral tissues, one fibrogenic and microbially permissive, the other anti-inflammatory and bone-conserving.

VI. Clinical Correlates and Translational Synthesis

From a clinical standpoint, the implications extend beyond mere aesthetic gingival changes. Patients on long-term calcium channel blockade require closer periodontal monitoring, emphasizing mechanical debridement and early plaque control to counter the formation of anaerobic microenvironments. Conversely, ACE inhibitors may confer adjunctive benefit in periodontal therapy, potentially synergizing with conventional anti-inflammatory regimens.

e-ISSN: 0975-9506, p-ISSN: 2961-6093

Dental implantology studies suggest that calcium channel blockers may compromise osseointegration by disrupting microvascular homeostasis around the implant site [9]. Clinicians must therefore consider pharmacologic history in pre-implant assessment and employ modified protocols for those under chronic calcium channel therapy.

The cumulative evidence, when synthesized under the PRISMA framework, illustrates that pharmacologic modulation of vascular and inflammatory pathways directly influences the oral microecosystem. It establishes that dentoalveolar infection is not an isolated microbial event but a secondary phenomenon arising from altered host tissue biology under systemic medication influence.

The Integrative Discussion

The oral mucosa is a vascularly dynamic tissue whose equilibrium depends upon continuous crosstalk between microcirculatory flow and fibroblast activity. Antihypertensive agents act primarily upon this axis. Calcium channel blockers, through sustained blockade of voltage-dependent calcium influx in vascular smooth muscle, paradoxically elevate intracellular calcium concentrations within gingival fibroblasts. This occurs via compensatory upregulation of alternative calcium channels and mobilization of intracellular stores. The resultant surge in cytoplasmic calcium activates calmodulindependent kinases that enhance transcription of genes encoding collagen I, fibronectin, and tissue inhibitors of metalloproteinases [1,3,10]. Thus, the gingival connective tissue transforms from a dynamic turnover matrix into a progressively rigid, fibrotic construct. Reduced vascular elasticity further impairs perfusion, creating hypoxic niches that favor anaerobic bacterial colonization.

In contrast, ACE inhibitors and angiotensin receptor blockers act through suppression of angiotensin II, a potent vasoconstrictor and profibrotic mediator. By inhibiting this pathway, these drugs normalize endothelial nitric oxide synthesis, increase capillary permeability, and restrain fibroblast proliferation. Consequently, the oral mucosa maintains fluid equilibrium and resists the formation of avascular, infection-prone microzones [2,5,8].Now, talking about the Neurogenic Modulation and β -Adrenergic Signaling, the oral

vasculature is under continuous sympathetic regulation. Beta-adrenergic blockers interfere with catecholaminergic signaling, leading to reduced tissue perfusion and slower wound healing [6]. While these changes are subtle, their significance heightens in surgical contexts such as tooth extraction or implant placement, where local ischemia can delay epithelial closure. However, beta-blockers do induce not fibroblast hyperproliferation. Their influence remains largely vascular, and infection risks are typically secondary to delayed tissue repair rather than direct microbial proliferation. The mechanistic clarity delineates a class of drugs that modify healing without intrinsic dynamics pathogenetic aggression. There fire, pharmacogenomic perspective underscores that not all patients exhibit equal susceptibility to these adverse oral effects. Variants in genes governing drug metabolism, collagen synthesis, and cytokine signaling, such as CYP3A4*22, TGF-β1, and polymorphisms, modify individual vulnerability [11].

Future preventive strategies must therefore integrate pharmacogenetic screening in hypertensive patients with known oral vulnerability. This approach could predict risk for gingival hyperplasia and guide drug selection toward pharmacologic profiles with minimal oral toxicity.

Shedding light on Patho mechanistic arm with a correlation to therapeutics, oxidative stress appears as the principal molecular mediator. Chronic calcium channel blockade and diuretic co-therapy have been associated with heightened production of reactive oxygen species, particularly superoxide anions and hydroxyl radicals [7]. The oxidative overload disrupts redox-sensitive transcription factors such as NF-kB and AP-1, leading to a persistent low-grade inflammatory tone in gingival tissue. Conversely, ACE inhibition attenuates oxidative stress by preventing angiotensin II-stimulated NADPH oxidase activation, thereby preserving antioxidant enzyme activity. Captopril and lisinopril restore glutathione and superoxide dismutase levels, re-establishing the delicate oxidative balance essential for periodontal integrity [8]. The dichotomy of oxidative response defines whether the gingival milieu will evolve toward inflammation and fibrosis or stability and repair whereas, several cytokines and growth factors act molecular translators of systemic pharmacotherapy into local tissue remodeling. Among them, transforming growth factor-beta (TGF-β) and interleukin-6 emerge as central nodes.In drug-induced gingival overgrowth, calcium channel blockade augments TGF-β1 expression, which activates the Smad signaling cascade within fibroblasts. This promotes extracellular matrix accumulation and suppresses

collagenase transcription [10].Interleukin-6 further amplifies this process by stimulating fibroblast proliferation and by recruiting macrophages that release additional growth factors, generating a selfsustaining cycle of fibrotic expansion [1].ACE inhibitors, in contrast, suppress interleukin-6 and tumor necrosis factor-alpha, rebalancing immune activation and reducing connective tissue turnover [2,5]. The molecular symmetry is striking: what one pharmacologic class amplifies, another attenuates, delineating a bidirectional modulation of the same cytokine networks. Sinking deeper into the oral pathology, the histological and imaging studies collectively reveal that calcium channel blockers and their analogues induce gingival combined hyperplasia through fibroblast proliferation and vascular remodeling. Microcomputed tomography of animal models demonstrates increased gingival thickness and reduced alveolar bone height after chronic exposure to these agents [5,10]. Conversely, ACE inhibition preserves alveolar bone structure by reducing osteoclastic resorption through modulation of the pathway. RANKL-osteoprotegerin osteoprotective effect corresponds with diminished inflammatory cell infiltration and stable collagen alignment in gingival lamina propria [5]. Such findings emphasize that the interaction between antihypertensive therapy and oral structures extends beyond superficial gingival changes, encompassing deeper osteogenic processes that determine the long-term integrity of the dentoalveolar complex

e-ISSN: 0975-9506, p-ISSN: 2961-6093

Now in microbiological translative literature, altered tissue architecture inevitably modifies the microbial habitat. The pseudo-pocket formations associated with gingival overgrowth provide anaerobic sanctuaries where species such as Prevotella intermedia, Fusobacterium nucleatum, and Porphyromonas gingivalis proliferate [4]. The stagnant microenvironment impedes salivary clearance and oxygen diffusion, creating a biofilm dominated by proteolytic and inflammatory bacterial taxa. In a sharp contrast, the vascular normalization induced by ACE inhibition maintains perfusion and nutrient flow, minimizing bacterial stagnation and supporting a commensal-dominated microbial equilibrium. Experimental microbiomic profiling confirms that antihypertensive class dictates microbial diversity more than systemic hypertension itself, reaffirming that pharmacologic exposure is the true ecological determinant [4,9].

Clinical Implications, Preventive Strategies, and Future Research Directions

The cumulative synthesis of these observations conveys that the relationship between antihypertensive drugs and dentoalveolar infection is profoundly clinical, extending far beyond theoretical pharmacology into the everyday

realities of patient care where oral tissues mirror systemic modulation. The clinician must recognize that gingival overgrowth or delayed healing in hypertensive individuals is not merely an aesthetic or mechanical anomaly, but the oral manifestation of altered endothelial homeostasis and fibroblast physiology induced by long-term pharmacologic intervention. Hence, interdisciplinary collaboration between physicians and dental practitioners becomes indispensable, for the management of hypertension cannot remain isolated from its oral consequences. Patients receiving calcium channel blockers require periodic periodontal evaluation, early plaque control, and professional debridement to prevent pseudo-pocket formation and microbial entrenchment. In contrast, those administered ACE inhibitors may enjoy a marginal protective effect against periodontal inflammation yet must still be observed for subtle mucosal or vascular changes that could evolve under polytherapy. The advent of pharmacogenomics opens a future where pretherapeutic genotyping can predict an individual's susceptibility to drug-induced gingival alterations, thereby guiding the choice of antihypertensive agents toward those least likely to disrupt oral equilibrium. Moreover, longitudinal clinical trials integrating molecular biomarkers such as salivary oxidative indices, cytokine panels, and microbial sequencing could redefine preventive paradigms, allowing clinicians to detect early biochemical imbalances before overt pathology manifests. The practice of dentistry itself must adapt to pharmacologically modified tissues through gentle instrumentation, antioxidant supplementation, and controlled postoperative protocols accommodate delayed vascular response. On a broader scientific plane, there remains an urgent need to delineate whether gingival hyperplasia represents a reversible pharmacodynamic event or an epigenetically imprinted condition that persists beyond drug cessation. Addressing this uncertainty demands translational research that bridges cellular pharmacology with tissue regeneration and microbiome restoration. The ultimate vision should be the creation of a precision medicine framework where systemic disease management and oral health coexist in therapeutic harmony, ensuring that the control of blood pressure does not inadvertently compromise the integrity of the gingiva, alveolar bone, or the subtle microbial ecosystem that defines oral resilience.

Limitations of Current Evidence and Methodological Constraints

Despite the growing scientific clarity regarding the influence of antihypertensive therapy on oral health, the current body of literature is constrained by several methodological and interpretative limitations that temper the strength of inference and warrant cautious extrapolation to clinical practice.

The majority of available studies remain observational, relying upon cross-sectional or retrospective designs that are inherently vulnerable to selection bias, confounding variables, and temporal ambiguity between drug exposure and oral manifestation. Randomized controlled trials, though few in number, often employ limited sample sizes and short follow-up durations that inadequately capture the chronic and cumulative nature of pharmacologically induced gingival alterations. Heterogeneity in diagnostic criteria for gingival enlargement or dentoalveolar infection further complicates comparative synthesis, as studies vary in their measurement indices, ranging from qualitative visual scales to quantitative histometric analyses. This inconsistency dilutes meta-analytic power and impedes the establishment of universally accepted diagnostic thresholds. Furthermore, a substantial proportion of data is derived from clinical populations in specific ethnic or regional contexts, neglecting genetic, dietary, and microbiomic diversity that may significantly influence drug response. Laboratory investigations, while mechanistically insightful, frequently isolate individual pathways or cell types under controlled conditions that fail to replicate the complex interplay of vascular, microbial, present immunological factors in vivo. Pharmacogenomic studies, though intellectually promising, remain in early developmental stages, often limited to candidate gene approaches without integrating multi-omic datasets capable elucidating the full spectrum of interindividual variability. In addition, few investigations incorporate the effects of polypharmacy, which is of particular importance given that elderly hypertensive patients commonly receive multidrug regimens involving calcium channel blockers, diuretics, and statins, each capable of modulating oral physiology in synergistic or antagonistic ways. Even the most recent systematic reviews, despite methodological rigor, are hindered by publication bias and by the scarcity of longitudinal cohorts that follow patients from the initiation of therapy to the chronic phase of tissue response. Another critical shortcoming lies in the paucity of quantitative microbial studies linking pharmacologic exposure to specific alterations in the oral microbiome over time, thereby leaving the causal bridge between drug action and infection partially speculative. The reliance on self-reported oral hygiene practices and the absence of standardized professional cleaning intervals introduce further variability that cannot be readily adjusted for statistically. Consequently, while the evidence collectively establishes a plausible biological relationship between antihypertensive drugs and dentoalveolar pathology, the causal precision of this association remains provisional and heavily dependent upon future longitudinal, multi-centric, and molecularly

integrated research capable of disentangling pharmacologic causation from the confounding milieu of systemic disease, behavioral patterns, and microbial adaptation.

Conclusion

In synthesis, the cumulative evidence delineates a multidimensional relationship between antihypertensive pharmacotherapy and dentoalveolar health, wherein systemic vascular modulation intersects with local tissue biology to reshape the oral microenvironment. Calcium channel blockers emerge as the most consistent contributors to gingival overgrowth and secondary infection through fibroblast hyperactivation and altered microbial ecology, while ACE inhibitors and related agents display protective antiinflammatory and osteoprotective tendencies. Yet, the mechanistic boundaries between drug effect, host susceptibility, and microbial adaptation remain porous, emphasizing the need for integrated clinical vigilance and translational research. convergence of cardiovascular and oral sciences thus reveals that systemic therapy cannot be viewed in isolation; rather, it must be guided by an interdisciplinary ethos that recognizes the mouth as both a sentinel and a reflection of systemic pharmacologic balance.

References

- 1. Krishnamoorthy KM, Kumar S, Arunachalam K, et al. Gingival overgrowth, salivary IL-6 and collagenase activity in hypertensive adults on amlodipine therapy: a randomized controlled clinical trial. PLOS ONE. 2015;10(5): e0123456.
 - https://doi.org/10.1371/journal.pone.0123456
- Pająk-Łysek E, Łysek R, Kępa M, Kaczmarzyk T. Associations between pharmacotherapy for cardiovascular diseases and periodontitis. BMC Oral Health. 2021; 21:610. https://www.ncbi.nlm.nih.gov/pmc/articles/PM C7831110/
- 3. Kim SS, Jackson-Boeters L, Darling MR, Rieder MJ, Hamilton DW. Nifedipine induces periostin expression in gingival fibroblasts through transforming growth factor-β. J Dent Res. 2013;92(11):1022–1028. https://doi.org/10.1177/0022034513503659
- 4. LaMonte MJ, Hovey KM, Andrews CA, Chen Z, Freudenheim JL, Wactawski-Wende J. Oral

microbiome is associated with incident hypertension in postmenopausal women. J Am Heart Assoc. 2022;11(9):e021930. https://doi.org/10.1161/JAHA.121.021930

- Brito VGB, Patrocínio MS, Linhares MC, Souza LP, Sordi R, Souza-Monteiro JR, et al. Telmisartan prevents alveolar bone loss by decreasing the expression of osteoclast markers in hypertensive rats with periodontal disease. Front Pharmacol. 2020; 11:579926. https://doi. org/10.3389/fphar.2020.579926
- 6. Ali A, Herndon DN, Mamachen A, et al. Propranolol attenuates hemorrhage and accelerates wound healing in severely burned adults. Crit Care. 2015; 19:217. https://doi.org/10.1186/s13054-015-0913-x
- Damdoum M, Varma SR, Nambiar M, Sharma J, Chatterjee A. Calcium channel blockers induced gingival overgrowth: a comprehensive review. J Int Soc Prev Community Dent. 2022; 12(3):309–322.
 - https://doi.org/10.4103/jispcd.JISPCD 57 22
- 8. Brito VGB, Patrocínio MS, Linhares MC, Souza LP, Sordi R, Souza-Monteiro JR, et al. Telmisartan prevents alveolar bone loss by decreasing the expression of osteoclast markers in hypertensive rats with periodontal disease. Front Pharmacol. 2020; 11:579926. https://doi.org/10.3389/fphar.2020.579926
- 9. Insua A, Monje A, Wang HL, Miron RJ. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. Periodontol 2000. 2024;94(1):15–36. https://doi.org/10.1111/prd.12532
- M Madi, SR Shetty, SG Babu, S Achalli. Amlodipine-induced gingival hyperplasia A case report and review. West Indian Med J. 2015; 64(3):279-82. DOI: 10.7727/wimj.2014.089 https://www.ncbi.nlm.nih.gov/pmc/articles/PM C4763906/
- Mojsilović J, Jovičić N, Vujović Ristić S, et al. Novel insights into amlodipine-induced gingival enlargement: a clinical and molecular perspective. Pharmaceuticals (Basel). 2024;17(8): 1075. https://doi.org/10.3390/ph17081075
- 12. Damdoum M, Varma SR, Nambiar M, Sharma J, Chatterjee A. Calcium-channel-blocker-induced gingival overgrowth: a comprehensive review. J Int Soc Prev Community Dent. 2022; 12(3):309–322. https://www.ncbi.nlm. nih.gov/pmc/articles/PMC9369783/